Patents by Inventor Steven D. Phillips

Steven D. Phillips has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10436122
    Abstract: A turbine engine includes a fan connected to a fan shaft, a combustion chamber, and an electric motor/generator in communication with the fan shaft. A controller is configured to direct power into the electric motor/generator during engine accelerations from steady state such that air flow to the combustion chamber is increased. The controller is further configured to direct power out of the electric motor/generator during engine decelerations from steady state such that air flow to the combustion chamber is decreased.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: October 8, 2019
    Assignee: Rolls-Royce North American Technologies, Inc.
    Inventors: Curtis H. Cline, Richard J. Skertic, Russell E. White, Jr., Steven D. Phillips
  • Publication number: 20190263736
    Abstract: Disclosed are processes for the production of fluorinated olefins, preferably adapted to commercialization of CF3CF?CH2 (1234yf). Three steps may be used in preferred embodiments in which a feedstock such as CCl2?CClCH2Cl (which may be purchased or synthesized from 1,2,3-trichloropropane) is fluorinated (preferably with HF in gas-phase in the presence of a catalyst) to synthesize a compound such as CF3CCl?CH2, preferably in a 80-96% selectivity. The CF3CCl?CH2 is preferably converted to CF3CFClCH3 (244-isomer) using a SbCl5 as the catalyst which is then transformed selectively to 1234yf, preferably in a gas-phase catalytic reaction using activated carbon as the catalyst. For the first step, a mixture of Cr2O3 and FeCl3/C is preferably used as the catalyst to achieve high selectivity to CF3CCl?CH2 (96%). In the second step, SbCl5/C is preferably used as the selective catalyst for transforming 1233xf to 244-isomer, CF3CFClCH3.
    Type: Application
    Filed: August 24, 2018
    Publication date: August 29, 2019
    Inventors: Sudip Mukhopadhyay, Hsueh S. Tung, Michael Van Der Puy, Daniel C. Merkel, Jing Ji Ma, Cheryl L. Bortz, Barbara A. Light, Steven D. Phillips, Rajesh K. Dubey
  • Patent number: 10059647
    Abstract: Disclosed are processes for the production of fluorinated olefins, preferably adapted to commercialization of CF3CF?CH2 (1234yf). Three steps may be used in preferred embodiments in which a feedstock such as CCl2?CClCH2Cl (which may be purchased or synthesized from 1,2,3-trichloropropane) is fluorinated (preferably with HF in gas-phase in the presence of a catalyst) to synthesize a compound such as CF3CCl?CH2, preferably in a 80-96% selectivity. The CF3CCl?CH2 is preferably converted to CF3CFClCH3 (244-isomer) using a SbCl5 as the catalyst which is then transformed selectively to 1234yf, preferably in a gas-phase catalytic reaction using activated carbon as the catalyst. For the first step, a mixture of Cr2O3 and FeCl3/C is preferably used as the catalyst to achieve high selectivity to CF3CCl?CH2 (96%). In the second step, SbCl5/C is preferably used as the selective catalyst for transforming 1233xf to 244-isomer, CF3CFClCH3.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: August 28, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Sudip Mukhopadhyay, Hsueh S. Tung, Michael Van Der Puy, Daniel C. Merkel, Jing Ji Ma, Cheryl L. Bortz, Barbara A. Light, Steven D. Phillips, Rajesh K. Dubey
  • Patent number: 9593591
    Abstract: A control for a turbine engine using electrical machines monitors engine health and allocates power extraction between the electrical machines.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: March 14, 2017
    Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.
    Inventors: Steven D. Phillips, Tom M. Neuman, Michael Armstrong
  • Publication number: 20160039729
    Abstract: Disclosed is a process for producing fluorinated organic compounds, including hydrofluoropropenes, which preferably comprises converting at least one compound of Formula (I): C(X)3CF2C(X)3??(I) to at least one compound of Formula (II) CF3CF?CHZ??(II) where each X and Z is independently H, F, Cl, I or Br, said process preferably not including any substantial amount of oxygen-containing catalyst in certain embodiments. Preferably Z is H.
    Type: Application
    Filed: August 10, 2015
    Publication date: February 11, 2016
    Inventors: Hsueh S. Tung, Sudip Mukhopadhyay, Michael Van Der Puy, Daniel C. Merkel, Jing Ji Ma, Cheryl L. Bortz, Barbara A. Light, Steven D. Phillips, Kim M. Fleming, Susan A. Ferguson
  • Publication number: 20160010567
    Abstract: A turbine engine includes a fan connected to a fan shaft, a combustion chamber, and an electric motor/generator in communication with the fan shaft. A controller is configured to direct power into the electric motor/generator during engine accelerations from steady state such that air flow to the combustion chamber is increased. The controller is further configured to direct power out of the electric motor/generator during engine decelerations from steady state such that air flow to the combustion chamber is decreased.
    Type: Application
    Filed: April 7, 2015
    Publication date: January 14, 2016
    Inventors: Curtis H. Cline, Richard J. Skertic, Russell E. White, JR., Steven D. Phillips
  • Publication number: 20150369138
    Abstract: A control for a turbine engine using electrical machines monitors engine health and allocates power extraction between the electrical machines.
    Type: Application
    Filed: November 26, 2013
    Publication date: December 24, 2015
    Inventors: Steven D. PHILLIPS, Tom M. NEUMAN, Michael ARMSTRONG
  • Publication number: 20150315108
    Abstract: Disclosed are processes for the production of fluorinated olefins, preferably adapted to commercialization of CF3CF?CH2 (1234yf). Three steps may be used in preferred embodiments in which a feedstock such as CCl2?CClCH2Cl (which may be purchased or synthesized from 1,2,3-trichloropropane) is fluorinated (preferably with HF in gas-phase in the presence of a catalyst) to synthesize a compound such as CF3CCl?CH2, preferably in a 80-96% selectivity. The CF3CCl?CH2 is preferably converted to CF3CFClCH3 (244-isomer) using a SbCl5 as the catalyst which is then transformed selectively to 1234yf, preferably in a gas-phase catalytic reaction using activated carbon as the catalyst. For the first step, a mixture of Cr2O3 and FeCl3/C is preferably used as the catalyst to achieve high selectivity to CF3CCl?CH2 (96%). In the second step, SbCl5/C is preferably used as the selective catalyst for transforming 1233xf to 244-isomer, CF3CFClCH3.
    Type: Application
    Filed: May 5, 2014
    Publication date: November 5, 2015
    Inventors: SUDIP MUKHOPADHYAY, Hsueh S. Tung, Michael Van der Puy, Daniel C. Merkel, Jing Ji Ma, Cheryl L. Bortz, Barbara A. Light, Steven D. Phillips, Rajesh K. Dubey
  • Patent number: 9102579
    Abstract: Disclosed is a process for producing fluorinated organic compounds, including hydrofluoropropenes, which preferably comprises converting at least one compound of Formula (I): C(X)3CF2C(X)3??(I) to at least one compound of Formula (II) CF3CF?CHZ??(II) where each X and Z is independently H, F, Cl, I or Br, said process preferably not including any substantial amount of oxygen-containing catalyst in certain embodiments. Preferably Z is H.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: August 11, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Barbara A. Light, Steven D. Phillips, Kim M. Fleming, Susan A. Ferguson, Jing Ji Ma, Cheryl L. Bortz, Michael Van Der Puy, Daniel C. Merkel, Hsueh S. Tung, Sudip Mukhopadhyay
  • Patent number: 9035111
    Abstract: A method for producing fluorinated organic compounds, including hydrofluoropropenes, which preferably comprises converting at least one compound of formula (I): CF3(—CX2X2)nCX1?H2??(I) to at least one compound of formula (II): CF3(CX2X2)nCX1?H2??(II), where X1 is Cl, Br or I, each X2 is independently selected from the group consisting of H, Cl, F, Br or J, and n is 0, 1, or 2.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: May 19, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Sudip Mukhopadhyay, Cheryl L. Bortz, Kim M. Fleming, Steven D. Phillips, Rajesh K. Dubey
  • Patent number: 8754271
    Abstract: Disclosed are processes for the production of fluorinated olefins, preferably adapted to commercialization of CF3CF?CH2 (1234yf). Three steps may be used in preferred embodiments in which a feedstock such as CCl2?CClCH2Cl is fluorinated to synthesize a compound such as CF3CCl?CH2. The CF3CCl?CH2 is preferably converted to CF3CFClCH3 (244-isomer) using a SbCl5 as the catalyst which is then transformed selectively to 1234yf. For the first step, a mixture of Cr2O3 and FeCl3/C is preferably used as the catalyst to achieve high selectivity to CF3CCl?CH2 (96%). In the second step, SbCl5/C is preferably used as the selective catalyst for transforming 1233xf to 244-isomer, CF3CFClCH3. The intermediates are preferably isolated and purified by distillation and used in the next step without further purification, preferably to a purity level of greater than about 95%.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: June 17, 2014
    Assignee: Honeywell International Inc.
    Inventors: Sudip Mukhopadhyay, Hsueh S. Tung, Michael Van Der Puy, Daniel C. Merkel, Jing Ji Ma, Cheryl L. Bortz, Barbara A. Light, Steven D. Phillips, Rajesh K. Dubey
  • Patent number: 8324436
    Abstract: A multi-step process for preparing 2,3,3,3-tetrafluoro-1-propene comprising the steps of (a) contacting a starting material comprising 2-chloro-3,3,3-trifluoro-1-propene with hydrogen fluoride in the presence of activated first catalyst selected from the group consisting of antimony-halides, iron-halides, titanium halides, and tin-halides, to produce an intermediate composition; and (b) contacting said intermediate composition with a second catalyst of activated carbon to produce a final product comprising 2,3,3,3-tetrafluoro-1-propene.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: December 4, 2012
    Assignee: Honeywell International Inc.
    Inventors: Sudip Mukhopadhyay, Barbara A. Light, Kim M. Fleming, Steven D. Phillips, Rajesh K. Dubey
  • Publication number: 20120203036
    Abstract: A multi-step process for preparing 2,3,3,3-tetrafluoro-1-propene comprising the steps of (a) contacting a starting material comprising 2-chloro-3,3,3-trifluoro-1-propene with hydrogen fluoride in the presence of activated first catalyst selected from the group consisting of antimony-halides, iron-halides, titanium halides, and tin-halides, to produce an intermediate composition; and (b) contacting said intermediate composition with a second catalyst of activated carbon to produce a final product comprising 2,3,3,3-tetrafluoro-1-propene.
    Type: Application
    Filed: November 5, 2008
    Publication date: August 9, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Sudip Mukhopadhyay, Barbara A. Light, Kim M. Fleming, Steven D. Phillips, Rajesh K. Dubey
  • Publication number: 20120149951
    Abstract: Disclosed are processes for the production of fluorinated olefins, preferably adapted to commercialization of CF3CF?CH2 (1234yf). Three steps may be used in preferred embodiments in which a feedstock such as CCl2?CClCH2Cl is fluorinated to synthesize a compound such as CF3CCl?CH2. The CF3CCl?CH2 is preferably converted to CF3CFClCH3 (244-isomer) using a SbCl5 as the catalyst which is then transformed selectively to 1234yf. For the first step, a mixture of Cr2O3 and FeCl3/C is preferably used as the catalyst to achieve high selectivity to CF3CCl?CH2 (96%). In the second step, SbCl5/C is preferably used as the selective catalyst for transforming 1233xf to 244-isomer, CF3CFClCH3. The intermediates are preferably isolated and purified by distillation and used in the next step without further purification, preferably to a purity level of greater than about 95%.
    Type: Application
    Filed: November 22, 2011
    Publication date: June 14, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: SUDIP MUKHOPADHYAY, HSUEH S. TUNG, MICHAEL VAN DER PUY, DANIEL C. MERKEL, JING JI MA, CHERYL L. BORTZ, BARBARA A. LIGHT, STEVEN D. PHILLIPS, RAJESH K. DUBEY
  • Patent number: 8084653
    Abstract: Disclosed are processes for the production of fluorinated olefins, preferably adapted to commercialization of CF3CF?CH2 (1234yf). Three steps may be used in preferred embodiments in which a feedstock such as CCl2?CClCH2Cl (which may be purchased or synthesized from 1,2,3-trichloropropane) is fluorinated (preferably with HF in gas-phase in the presence of a catalyst) to synthesize a compound such as CF3CCl?CH2, preferably in a 80-96% selectivity. The CF3CCl?CH2 is preferably converted to CF3CFClCH3 (244-isomer) using a SbCl5 as the catalyst which is then transformed selectively to 1234yf, preferably in a gas-phase catalytic reaction using activated carbon as the catalyst. For the first step, a mixture of Cr2O3 and FeCl3/C is preferably used as the catalyst to achieve high selectivity to CF3CCl?CH2 (96%). In the second step, SbCl5/C is preferably used as the selective catalyst for transforming 1233xf to 244-isomer, CF3CFClCH3.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: December 27, 2011
    Assignee: Honeywell International, Inc.
    Inventors: Hsueh S. Tung, Sudip Mukhopadhyay, Michael Van Der Puy, Daniel C. Merkel, Jing Ji Ma, Cheryl L. Bortz, Barbara A. Light, Steven D. Phillips, Rajesh K. Dubey
  • Publication number: 20090203945
    Abstract: A method for producing fluorinated organic compounds, including hydrofluoropropenes, which preferably comprises converting at least one compound of formula (I): CF3(—CX2X2)nCX1?H2??(I) to at least one compound of formula (II): CF3(CX2X2)nCX1?H2??(II), where X1 is Cl, Br or I, each X2 is independently selected from the group consisting of H, Cl, F, Br or J, and n is 0, 1, or 2.
    Type: Application
    Filed: August 21, 2008
    Publication date: August 13, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Sudip Mukhopadhyay, Cheryl L. Bortz, Kim M. Fleming, Steven D. Phillips, Rajesh K. Dubey
  • Publication number: 20090124837
    Abstract: A multi-step process for preparing 2,3,3,3-tetrafluoro-1-propene comprising the steps of (a) contacting a starting material comprising 2-chloro-3,3,3-trifluoro-1-propene with hydrogen fluoride in the presence of activated first catalyst selected from the group consisting of antimony-halides, iron-halides, titanium halides, and tin-halides, to produce an intermediate composition; and (b) contacting said intermediate composition with a second catalyst of activated carbon to produce a final product comprising 2,3,3,3-tetrafluoro-1-propene.
    Type: Application
    Filed: November 5, 2008
    Publication date: May 14, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Sudip Mukhopadhyay, Barbara A. Light, Kim M. Fleming, Steven D. Phillips, Rajesh K. Dubey
  • Patent number: 5508356
    Abstract: A process for preparing a polybutene amine composition comprises the steps of reacting a chlorinated polybutene with an excess of at least one mole of at least one type of an amine compound per mole of the chlorinated polybutene at a reaction temperature of at least about 100.degree. C.; neutralizing the reaction mixture with a base selected from the group of alkali metal and alkaline earth metal alkoxides and amides with formulation of one of an alcohol or ammonia, respectively; neutralizing any excess base with an acid that will produce essentially no water as a by-product; and recovering the polybutene amine composition, the process including the steps of removing the alcohol or ammonia in a timely fashion; and removing excess of the amine compound.
    Type: Grant
    Filed: June 17, 1994
    Date of Patent: April 16, 1996
    Assignee: Ferro Corporation
    Inventors: James L. Dever, Mannat C. Menon, Steven D. Phillips, Larry J. Baldwin
  • Patent number: 5346965
    Abstract: A process for preparing a polybutene amine composition comprises the steps of reacting a chlorinated polybutene with an excess of at least one mole of at least one type of an amine compound per mole of the chlorinated polybutene at a reaction temperature of at least about 100.degree. C.; neutralizing the reaction mixture with a base selected from the group of alkali metal and alkaline earth metal alkoxides and amides with formation of one of an alcohol or ammonia, respectively; neutralizing any excess base with an acid that will produce essentially no water as a by-product; and recovering the polybutene amine composition, the process including the steps of removing the alcohol or ammonia in a timely fashion; and removing excess of the amine compound.
    Type: Grant
    Filed: August 19, 1993
    Date of Patent: September 13, 1994
    Assignee: Ferro Corporation
    Inventors: James L. Dever, Mannat C. Menon, Steven D. Phillips, Larry J. Baldwin
  • Patent number: 4870157
    Abstract: Disclosed are selected 4-acyl-2,6-dialkylphenyl adducts of mono- and polysaccharides, which are useful an antioxidants in organic materials (e.g. polyolefins) normally subject to oxidative degradation.
    Type: Grant
    Filed: July 9, 1985
    Date of Patent: September 26, 1989
    Assignee: Olin Corporation
    Inventors: Steven D. Phillips, Bonnie B. Sandel