Patents by Inventor Steven Duquette

Steven Duquette has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7509957
    Abstract: A pressure driver for a ventilation system comprises a gas source, an inspiration flow control valve and a patient pressure sensor to form a closed loop control system. The inspiration flow control valve may be mounted within a housing and is operative to open and close in response to patient pressure measurements in order to produce a desired pressure at the patient. The pressure driver may further include a mixture control for allowing selective adjustment of the oxygen concentration in pressurized gas delivered to the patient. An oxygen mixer is connected between the gas source and the mixture control and is operative to deliver the desired mixture of oxygen and air to the inspiration flow control valve for delivery to the patient. An oxygen sensor monitors the oxygen concentration in the gas provided by the oxygen mixer.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: March 31, 2009
    Assignee: Viasys Manufacturing, Inc.
    Inventors: Steven Duquette, Terry Blansfield, Steve Han, Harold Miller
  • Publication number: 20070193579
    Abstract: A pressure driver for a ventilation system comprises a gas source, an inspiration flow control valve and a patient pressure sensor to form a closed loop control system. The inspiration flow control valve may be mounted within a housing and is operative to open and close in response to patient pressure measurements in order to produce a desired pressure at the patient. The pressure driver may further include a mixture control for allowing selective adjustment of the oxygen concentration in pressurized gas delivered to the patient. An oxygen mixer is connected between the gas source and the mixture control and is operative to deliver the desired mixture of oxygen and air to the inspiration flow control valve for delivery to the patient. An oxygen sensor monitors the oxygen concentration in the gas provided by the oxygen mixer.
    Type: Application
    Filed: February 21, 2006
    Publication date: August 23, 2007
    Inventors: Steven Duquette, Terry Blansfield, Steve Han, Harold Miller
  • Publication number: 20070157930
    Abstract: A system for circuit compliance compensated volume assurance pressure control in a patient respiratory ventilation circuit, having a patient circuit volume estimator for estimating a patient circuit compliance, a patient circuit volume estimator to estimate a circuit volume VOLCKT—EST based on the patient circuit compliance, a patient volume observer, for estimating a patient volume VOLTID—EST based on a measure delivered net volume VOLNET and the patient circuit compliance, a volume assurance controller for generating a circuit compliance volume compensation factor VOLTID—CTL based on a preset assured volume VOLASS—SET and the estimated patient volume VOLTID—EST, and a decelerating inspiratory flow controller, operative to generate a decelerating inspiratory peak flow based on a preset inspiratory time TINSP and the volume compensation factor VOLTID—CTL.
    Type: Application
    Filed: January 10, 2006
    Publication date: July 12, 2007
    Inventors: Ihab Soliman, Steven Duquette
  • Publication number: 20070101992
    Abstract: A system and a method for circuit compliance compensated pressure control in a patient respiratory ventilation system, having a pressure regulated feedback servo control loop, a pressure-regulated volume controller, and a patient volume observer. The patient volume observer is operative to estimate a patient volume, that is, the volume actually delivered to the patient by accounting for volume deviation or loss caused by patient circuit leakage and valve dynamics. Based on the difference between the estimated patient volume and a set tidal volume, the pressure-regulated volume controller is operative to generate and update a circuit compliance pressure compensation factor. The pressure regulated feedback servo control loop is operative to modulate the peak airway pressure based on the circuit compliance pressure compensation factor, so as to achieve the set tidal volume while maintaining a constant inspiratory time and a constant I:E ratio.
    Type: Application
    Filed: November 9, 2005
    Publication date: May 10, 2007
    Inventors: Ihab Soliman, Steven Duquette
  • Publication number: 20070101999
    Abstract: Provided is a high frequency oscillating ventilator comprising a housing assembly, a linear actuator, a linear coil, a piston mounted on a pushrod, a diaphragm dividing a housing into a first and second side and having an opening formed on the second side that is fluidly connected to the patient's airway for delivering gas thereto. The linear actuator is fixedly mounted to the housing assembly and has a linear coil coaxially disposed therewithin. A pushrod supports the linear coil on the linear actuator to allow relative axially sliding therebetween. The piston is directly mounted to the diaphragm such that reciprocation thereof as effectuated by the linear coil cooperating with the linear actuator alternately produces positive and negative pressure waves in the gas in the patient's airway.
    Type: Application
    Filed: November 8, 2005
    Publication date: May 10, 2007
    Inventors: Steven Duquette, Thomas Westfall, Steve Han
  • Publication number: 20070089738
    Abstract: A system and a method for circuit compliance compensated volume control in a patient respiratory ventilation system having a flow regulated feedback servo control loop, a volume delivery controller, and a patient volume observer. In the flow regulated feedback servo control loop, an estimate of patient volume is used for feedback control, such that a tidal volume is achieved upon servo regulation, and the peak inspiratory flow is modulated based on volume error between the set tidal volume and the estimated patient volume. Thereby, a constant inspiratory time and a constant I:E ratio can be maintained. In the volume delivery control, the feedback volume error is normalized to a volume error percentage, and the gain of the controller is dynamically changed based on the volume error percentage, such that the controller effort can be minimized when the volume target is approached.
    Type: Application
    Filed: October 11, 2005
    Publication date: April 26, 2007
    Inventors: Ihab Soliman, Steven Duquette
  • Publication number: 20070074724
    Abstract: Provided is a universal interface adapted for providing continuous positive airway pressure to a patient when the interface is used with a standard ventilator. The interface is configured to operate at a supply pressure no greater than about 120 centimeters of H2O in order to deliver pressure to the patient of up to about 15 cm of H2O at a flow rate of up to about 12 liters/minute. The universal interface may comprise an interface body having a space pair of breathing passageways intersecting a corresponding of supply passageways. Each one of the breathing passageways is comprised of a patient passageway and an exhalation passageway. Each one of the supply passageways includes a jet venturi having a taper portion. Each one of the exhalation passageways includes a taper portion which tapers outwardly along a direction from the patient passageway toward the exhalation passageway.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 5, 2007
    Inventors: Steven Duquette, Alex Stenzler, Steve Han