Patents by Inventor Steven Edward Molesa

Steven Edward Molesa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9799783
    Abstract: Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: October 24, 2017
    Assignee: SunPower Corporation
    Inventors: Paul Loscutoff, Kahn Wu, Steven Edward Molesa
  • Patent number: 9559246
    Abstract: Methods of fabricating solar cell emitter regions using silicon nano-particles and the resulting solar cells are described. In an example, a method of fabricating an emitter region of a solar cell includes forming a region of doped silicon nano-particles above a dielectric layer disposed above a surface of a substrate of the solar cell. A layer of silicon is formed on the region of doped silicon nano-particles. At least a portion of the layer of silicon is mixed with at least a portion of the region of doped silicon nano-particles to form a doped polycrystalline silicon layer disposed on the dielectric layer.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: January 31, 2017
    Assignee: SunPower Corporation
    Inventors: Paul Loscutoff, David D. Smith, Michael Morse, Ann Waldhauer, Taeseok Kim, Steven Edward Molesa
  • Patent number: 9559228
    Abstract: Solar cells with doped groove regions separated by ridges and methods of fabricating solar cells are described. In an example, a solar cell includes a substrate having a surface with a plurality of grooves and ridges. A first doped region of a first conductivity type is disposed in a first of the grooves. A second doped region of a second conductivity type, opposite the first conductivity type, is disposed in a second of the grooves. The first and second grooves are separated by one of the ridges.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: January 31, 2017
    Assignee: SunPower Corporation
    Inventors: Steven Edward Molesa, Thomas Pass, Steve Kraft
  • Patent number: 9437757
    Abstract: A method of fabricating a solar cell is disclosed. The method includes forming a polished surface on a silicon substrate and forming a first flowable matrix in an interdigitated pattern on the polished surface, where the polished surface allows the first flowable matrix to form an interdigitated pattern comprising features of uniform thickness and width. In an embodiment, the method includes forming the silicon substrate using a method such as, but not limited to, of diamond wire or slurry wafering processes. In another embodiment, the method includes forming the polished surface on the silicon substrate using a chemical etchant such as, but not limited to, sulfuric acid (H2SO4), acetic acid (CH3COOH), nitric acid (HNO3), hydrofluoric acid (HF) or phosphoric acid (H3PO4). In still another embodiment, the etchant is an isotropic etchant. In yet another embodiment, the method includes providing a surface of the silicon substrate with at most 500 nanometer peak-to-valley roughness.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: September 6, 2016
    Assignee: SunPower Corporation
    Inventors: Genevieve A. Solomon, Scott Harrington, Kahn Wu, Paul Loscutoff, Junbo Wu, Steven Edward Molesa
  • Publication number: 20160071999
    Abstract: Methods of fabricating solar cell emitter regions using silicon nano-particles and the resulting solar cells are described. In an example, a method of fabricating an emitter region of a solar cell includes forming a region of doped silicon nano-particles above a dielectric layer disposed above a surface of a substrate of the solar cell. A layer of silicon is formed on the region of doped silicon nano-particles. At least a portion of the layer of silicon is mixed with at least a portion of the region of doped silicon nano-particles to form a doped polycrystalline silicon layer disposed on the dielectric layer.
    Type: Application
    Filed: November 18, 2015
    Publication date: March 10, 2016
    Inventors: Paul Loscutoff, David D. Smith, Michael Morse, Ann Waldhauer, Taeseok Kim, Steven Edward Molesa
  • Patent number: 9252319
    Abstract: Methods of fabricating solar cell emitter regions using silicon nano-particles and the resulting solar cells are described. In an example, a method of fabricating an emitter region of a solar cell includes forming a region of doped silicon nano-particles above a dielectric layer disposed above a surface of a substrate of the solar cell. A layer of silicon is formed on the region of doped silicon nano-particles. At least a portion of the layer of silicon is mixed with at least a portion of the region of doped silicon nano-particles to form a doped polycrystalline silicon layer disposed on the dielectric layer.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: February 2, 2016
    Assignee: SunPower Corporation
    Inventors: Paul Loscutoff, David D. Smith, Michael Morse, Ann Waldhauer, Taeseok Kim, Steven Edward Molesa
  • Publication number: 20150364625
    Abstract: A method of fabricating a solar cell is disclosed. The method includes forming a polished surface on a silicon substrate and forming a first flowable matrix in an interdigitated pattern on the polished surface, where the polished surface allows the first flowable matrix to form an interdigitated pattern comprising features of uniform thickness and width. In an embodiment, the method includes forming the silicon substrate using a method such as, but not limited to, of diamond wire or slurry wafering processes. In another embodiment, the method includes forming the polished surface on the silicon substrate using a chemical etchant such as, but not limited to, sulfuric acid (H2SO4), acetic acid (CH3COOH), nitric acid (HNO3), hydrofluoric acid (HF) or phosphoric acid (H3PO4). In still another embodiment, the etchant is an isotropic etchant. In yet another embodiment, the method includes providing a surface of the silicon substrate with at most 500 nanometer peak-to-valley roughness.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 17, 2015
    Inventors: Genevieve A. Solomon, Scott Harrington, Kahn Wu, Paul Loscutoff, Junbo Wu, Steven Edward Molesa
  • Publication number: 20150206988
    Abstract: Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.
    Type: Application
    Filed: March 31, 2015
    Publication date: July 23, 2015
    Inventors: Paul Loscutoff, Kahn Wu, Steven Edward Molesa
  • Patent number: 9082925
    Abstract: A method of fabricating a solar cell is disclosed. The method includes forming a polished surface on a silicon substrate and forming a first flowable matrix in an interdigitated pattern on the polished surface, where the polished surface allows the first flowable matrix to form an interdigitated pattern comprising features of uniform thickness and width. In an embodiment, the method includes forming the silicon substrate using a method such as, but not limited to, of diamond wire or slurry wafering processes. In another embodiment, the method includes forming the polished surface on the silicon substrate using a chemical etchant such as, but not limited to, sulfuric acid (H2SO4), acetic acid (CH3COOH), nitric acid (HNO3), hydrofluoric acid (HF) or phosphoric acid (H3PO4). In still another embodiment, the etchant is an isotropic etchant. In yet another embodiment, the method includes providing a surface of the silicon substrate with at most 500 nanometer peak-to-valley roughness.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: July 14, 2015
    Assignee: SunPower Corporation
    Inventors: Genevieve A. Solomon, Scott Harrington, Kahn Wu, Paul Loscutoff, Junbo Wu, Steven Edward Molesa
  • Patent number: 9018033
    Abstract: A method of manufacturing solar cells is disclosed. The method comprises depositing an etch-resistant dopant material on a silicon substrate, the etch-resistant dopant material comprising a dopant source, forming a cross-linked matrix in the etch-resistant dopant material using a non-thermal cure of the etch-resistant dopant material, and heating the silicon substrate and the etch-resistant dopant material to a temperature sufficient to cause the dopant source to diffuse into the silicon substrate.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: April 28, 2015
    Assignee: SunPower Corporation
    Inventors: Kahn C. Wu, Steven M. Kraft, Paul Loscutoff, Steven Edward Molesa
  • Patent number: 8992803
    Abstract: Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: March 31, 2015
    Assignee: SunPower Corporation
    Inventors: Paul Loscutoff, Kahn Wu, Steven Edward Molesa
  • Publication number: 20140295609
    Abstract: Methods of fabricating solar cell emitter regions using silicon nano-particles and the resulting solar cells are described. In an example, a method of fabricating an emitter region of a solar cell includes forming a region of doped silicon nano-particles above a dielectric layer disposed above a surface of a substrate of the solar cell. A layer of silicon is formed on the region of doped silicon nano-particles. At least a portion of the layer of silicon is mixed with at least a portion of the region of doped silicon nano-particles to form a doped polycrystalline silicon layer disposed on the dielectric layer.
    Type: Application
    Filed: June 12, 2014
    Publication date: October 2, 2014
    Inventors: Paul Loscutoff, David D. Smith, Michael Morse, Ann Waldhauer, Taeseok Kim, Steven Edward Molesa
  • Publication number: 20140273331
    Abstract: A method of fabricating a solar cell is disclosed. The method includes forming a polished surface on a silicon substrate and forming a first flowable matrix in an interdigitated pattern on the polished surface, where the polished surface allows the first flowable matrix to form an interdigitated pattern comprising features of uniform thickness and width. In an embodiment, the method includes forming the silicon substrate using a method such as, but not limited to, of diamond wire or slurry wafering processes. In another embodiment, the method includes forming the polished surface on the silicon substrate using a chemical etchant such as, but not limited to, sulfuric acid (H2SO4), acetic acid (CH3COOH), nitric acid (HNO3), hydrofluoric acid (HF) or phosphoric acid (H3PO4). In still another embodiment, the etchant is an isotropic etchant. In yet another embodiment, the method includes providing a surface of the silicon substrate with at most 500 nanometer peak-to-valley roughness.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: Genevieve A. Solomon, Scott Harrington, Kahn Wu, Paul Loscutoff, Junbo Wu, Steven Edward Molesa
  • Patent number: 8785233
    Abstract: Methods of fabricating solar cell emitter regions using silicon nano-particles and the resulting solar cells are described. In an example, a method of fabricating an emitter region of a solar cell includes forming a region of doped silicon nano-particles above a dielectric layer disposed above a surface of a substrate of the solar cell. A layer of silicon is formed on the region of doped silicon nano-particles. At least a portion of the layer of silicon is mixed with at least a portion of the region of doped silicon nano-particles to form a doped polycrystalline silicon layer disposed on the dielectric layer.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: July 22, 2014
    Assignee: SunPower Corporation
    Inventors: Paul Loscutoff, David D. Smith, Michael Morse, Ann Waldhauer, Taeseok Kim, Steven Edward Molesa
  • Publication number: 20140170800
    Abstract: Methods of fabricating solar cell emitter regions using silicon nano-particles and the resulting solar cells are described. In an example, a method of fabricating an emitter region of a solar cell includes forming a region of doped silicon nano-particles above a dielectric layer disposed above a surface of a substrate of the solar cell. A layer of silicon is formed on the region of doped silicon nano-particles. At least a portion of the layer of silicon is mixed with at least a portion of the region of doped silicon nano-particles to form a doped polycrystalline silicon layer disposed on the dielectric layer.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Inventors: Paul Loscutoff, David D. Smith, Michael Morse, Ann Waldhauer, Taeseok Kim, Steven Edward Molesa
  • Publication number: 20140166093
    Abstract: Methods of fabricating solar cell emitter regions using N-type doped silicon nano-particles and the resulting solar cells are described. In an example, a method of fabricating an emitter region of a solar cell includes forming a plurality of regions of N-type doped silicon nano-particles on a first surface of a substrate of the solar cell. A P-type dopant-containing layer is formed on the plurality of regions of N-type doped silicon nano-particles and on the first surface of the substrate between the regions of N-type doped silicon nano-particles. At least a portion of the P-type dopant-containing layer is mixed with at least a portion of each of the plurality of regions of N-type doped silicon nano-particles.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Inventors: Paul Loscutoff, Peter J. Cousins, Steven Edward Molesa, Ann Waldhauer
  • Publication number: 20140048133
    Abstract: A method of manufacturing solar cells is disclosed. The method comprises depositing an etch-resistant dopant material on a silicon substrate, the etch-resistant dopant material comprising a dopant source, forming a cross-linked matrix in the etch-resistant dopant material using a non-thermal cure of the etch-resistant dopant material, and heating the silicon substrate and the etch-resistant dopant material to a temperature sufficient to cause the dopant source to diffuse into the silicon substrate.
    Type: Application
    Filed: October 23, 2013
    Publication date: February 20, 2014
    Inventors: Kahn C. Wu, Steven M. Kraft, Paul Loscutoff, Steven Edward Molesa
  • Patent number: 8586397
    Abstract: A method of manufacturing solar cells is disclosed. The method comprises depositing an etch-resistant dopant material on a silicon substrate, the etch-resistant dopant material comprising a dopant source, forming a cross-linked matrix in the etch-resistant dopant material using a non-thermal cure of the etch-resistant dopant material, and heating the silicon substrate and the etch-resistant dopant material to a temperature sufficient to cause the dopant source to diffuse into the silicon substrate.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: November 19, 2013
    Assignee: SunPower Corporation
    Inventors: Kahn C. Wu, Steven M. Kraft, Paul Loscutoff, Steven Edward Molesa
  • Publication number: 20130081680
    Abstract: Solar cells with doped groove regions separated by ridges and methods of fabricating solar cells are described. In an example, a solar cell includes a substrate having a surface with a plurality of grooves and ridges. A first doped region of a first conductivity type is disposed in a first of the grooves. A second doped region of a second conductivity type, opposite the first conductivity type, is disposed in a second of the grooves. The first and second grooves are separated by one of the ridges.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Inventors: Steven Edward Molesa, Thomas Pass, Steve Kraft
  • Publication number: 20130081687
    Abstract: A method of manufacturing solar cells is disclosed. The method comprises depositing an etch-resistant dopant material on a silicon substrate, the etch-resistant dopant material comprising a dopant source, forming a cross-linked matrix in the etch-resistant dopant material using a non-thermal cure of the etch-resistant dopant material, and heating the silicon substrate and the etch-resistant dopant material to a temperature sufficient to cause the dopant source to diffuse into the silicon substrate.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Inventors: Kahn C. Wu, Steven M. Kraft, Paul Loscutoff, Steven Edward Molesa