Patents by Inventor Steven Edward Phillips

Steven Edward Phillips has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12139420
    Abstract: A method and apparatus is disclosed for separating an amount of a perfluoroalkyl or polyfluoroalkyl substance (PFAS) from water which is contaminated with the substance. The method comprises the steps of: admitting an amount of the water, which includes an initial concentration of the substance, into a chamber via an inlet thereinto, and introducing a flow of gas into the chamber. The introduced gas induces the water in the chamber to flow, and produces a froth layer which is formed at, and which rises above, an interface with the said flow of water and of introduced gas in the chamber. The froth layer includes an amount of water, and also a concentrated amount of the substance in comparison compared with its initial concentration. The step of removal of at least some of the froth layer from an upper portion of the chamber occurs.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: November 12, 2024
    Assignee: OPEC Remediation Technologies Pty Limited
    Inventors: Steven Edward Phillips, David John Burns
  • Patent number: 11975369
    Abstract: Apparatus is disclosed for separating an amount of a substance from groundwater, comprising an elongate chamber (18) having an inlet (22) which is arranged in use to admit groundwater into the chamber near a lower first end (24). There is also a gas sparger (26) located near the first end (24) which admits gas into the chamber for inducing groundwater to flow from the first end (24) of the chamber toward a second end upper end, and for producing a froth layer (32) which rises above an interface with the groundwater including a concentrated amount of the substance. A suction hood (38) can be moved downward from the top of the chamber (18) into a position to collapse the froth layer (32) and to cause it to be removed from the well body (14). The suction hood (38) (acting as a froth depth regulation device) controls the amount of groundwater in the froth layer (32), which influences the concentration of the contaminant substance achieved in the froth layer (32).
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: May 7, 2024
    Assignee: OPEC Remediation Technologies Pty Limited
    Inventors: Steven Edward Phillips, Gregory Raymond Brickle, David John Burns
  • Patent number: 11820700
    Abstract: A method of depositing a coating utilizing a coating apparatus includes providing a coating apparatus above a glass substrate and forming a coating on a surface of the glass substrate while flowing a fluorine-containing compound into the coating apparatus. The fluorine-containing compound inhibits the formation of the coating on one or more portions of the coating apparatus.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: November 21, 2023
    Assignee: Pilkington Group Limited
    Inventors: Michael Martin Radtke, Steven Edward Phillips
  • Patent number: 11358103
    Abstract: Apparatus is disclosed for separating an amount of a substance from groundwater, comprising an elongate chamber (18) having an inlet (22) which is arranged in use to admit groundwater into the chamber near a lower first end (24). There is also a gas sparger (26) located near the first end (24) which admits gas into the chamber for inducing groundwater to flow from the first end (24) of the chamber toward a second end upper end, and for producing a froth layer (32) which rises above an interface with the groundwater including a concentrated amount of the substance. A suction hood (38) can be moved downward from the top of the chamber (18) into a position to collapse the froth layer (32) and to cause it to be removed from the well body (14). The suction hood (38) (acting as a froth depth regulation device) controls the amount of groundwater in the froth layer (32), which influences the concentration of the contaminant substance achieved in the froth layer (32).
    Type: Grant
    Filed: June 11, 2017
    Date of Patent: June 14, 2022
    Inventors: Steven Edward Phillips, Gregory Raymond Brickle, David John Burns
  • Publication number: 20210300789
    Abstract: A method and apparatus is disclosed for separating an amount of a perfluoroalkyl or polyfluoroalkyl substance (PFAS) from water which is contaminated with the substance. The method comprises the steps of: admitting an amount of the water, which includes an initial concentration of the substance, into a chamber via an inlet thereinto, and introducing a flow of gas into the chamber. The introduced gas induces the water in the chamber to flow, and produces a froth layer which is formed at, and which rises above, an interface with the said flow of water and of introduced gas in the chamber. The froth layer includes an amount of water, and also a concentrated amount of the substance in comparison compared with its initial concentration. The step of removal of at least some of the froth layer from an upper portion of the chamber occurs.
    Type: Application
    Filed: December 10, 2018
    Publication date: September 30, 2021
    Inventor: Steven Edward Phillips
  • Patent number: 10837108
    Abstract: A CVD process for depositing a silica coating is provided. The process includes providing a float glass ribbon in a float glass manufacturing process. The process also includes forming a gaseous mixture including a silane compound, oxygen, a fluorine-containing compound, and a radical scavenger. The gaseous mixture is directed toward and along the float glass ribbon and is reacted over the float glass ribbon to form the silica coating thereon. The silica coating comprises silicon dioxide.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: November 17, 2020
    Assignee: Pilkington Group Limited
    Inventors: Douglas Martin Nelson, Michael Martin Radtke, Steven Edward Phillips
  • Publication number: 20190263679
    Abstract: Apparatus is disclosed for separating an amount of a substance from groundwater, comprising an elongate chamber (18) having an inlet (22) which is arranged in use to admit groundwater into the chamber near a lower first end (24). There is also a gas sparger (26) located near the first end (24) which admits gas into the chamber for inducing groundwater to flow from the first end (24) of the chamber toward a second end upper end, and for producing a froth layer (32) which rises above an interface with the groundwater including a concentrated amount of the substance. A suction hood (38) can be moved downward from the top of the chamber (18) into a position to collapse the froth layer (32) and to cause it to be removed from the well body (14). The suction hood (38) (acting as a froth depth regulation device) controls the amount of groundwater in the froth layer (32), which influences the concentration of the contaminant substance achieved in the froth layer (32).
    Type: Application
    Filed: June 11, 2017
    Publication date: August 29, 2019
    Inventors: Steven Edward Phillips, Gregory Raymond Brickle, David John Burns
  • Publication number: 20190176101
    Abstract: Apparatus is disclosed for separating an amount of a substance from groundwater, comprising an elongate chamber (18) having an inlet (22) which is arranged in use to admit groundwater into the chamber near a lower first end (24). There is also a gas sparger (26) located near the first end (24) which admits gas into the chamber for inducing groundwater to flow from the first end (24) of the chamber toward a second end upper end, and for producing a froth layer (32) which rises above an interface with the groundwater including a concentrated amount of the substance. A suction hood (38) can be moved downward from the top of the chamber (18) into a position to collapse the froth layer (32) and to cause it to be removed from the well body (14). The suction hood (38) (acting as a froth depth regulation device) controls the amount of groundwater in the froth layer (32), which influences the concentration of the contaminant substance achieved in the froth layer (32).
    Type: Application
    Filed: December 6, 2018
    Publication date: June 13, 2019
    Inventors: Steven Edward Phillips, Gregory Raymond Brickle, David John Burns
  • Publication number: 20160305021
    Abstract: A CVD process for depositing a silica coating is provided. The process includes providing a float glass ribbon in a float glass manufacturing process. The process also includes forming a gaseous mixture including a silane compound, oxygen, a fluorine-containing compound, and a radical scavenger. The gaseous mixture is directed toward and along the float glass ribbon and is reacted over the float glass ribbon to form the silica coating thereon. The silica coating comprises silicon dioxide.
    Type: Application
    Filed: June 29, 2016
    Publication date: October 20, 2016
    Inventors: Douglas Martin Nelson, Michael Martin Radtke, Steven Edward Phillips
  • Patent number: 9404179
    Abstract: A CVD process for depositing a silica coating is provided. The process includes providing a glass substrate. The process also includes forming a gaseous mixture including a silane compound, oxygen, a fluorine-containing compound, and a radical scavenger such as ethylene or propylene. The gaseous mixture is directed toward and along the glass substrate and is reacted over the glass substrate to form the silica coating thereon.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: August 2, 2016
    Assignee: PILKINGTON GROUP LIMITED
    Inventors: Douglas Martin Nelson, Michael Martin Radtke, Steven Edward Phillips
  • Publication number: 20150140216
    Abstract: A CVD process for depositing a silica coating is provided. The process includes providing a glass substrate. The process also includes forming a gaseous mixture including a silane compound, oxygen, a fluorine-containing compound, and a radical scavenger such as ethylene or propylene. The gaseous mixture is directed toward and along the glass substrate and is reacted over the glass substrate to form the silica coating thereon.
    Type: Application
    Filed: February 18, 2013
    Publication date: May 21, 2015
    Inventors: Douglas Nelson, Michael Martin Radtke, Steven Edward Phillips