Patents by Inventor Steven Essinger

Steven Essinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100177076
    Abstract: A wireless electronic-ink based display device for use in indoor and outdoor environments characterized by low and/or dynamic ambient lighting conditions. The wireless electronic-ink based display device has an ambient light level sensor for sensing ambient lighting conditions about the wireless electronic-ink based display device, and generating a drive control signal in response to sensed ambient lighting conditions. The wireless electronic-ink based display device also has an edge-lit LED-based illumination module, responsive to the drive control signal generated by the ambient light level sensor, for illuminating the display surface of its addressable electronic-ink display module during low-illumination ambient lighting conditions detected by the ambient light level sensor, under the control of a processor.
    Type: Application
    Filed: January 13, 2009
    Publication date: July 15, 2010
    Inventors: Steven Essinger, Michael Schnee
  • Publication number: 20100177707
    Abstract: Method and apparatus for increasing the SNR at the RF antenna of a wireless end-device (e.g. wireless electronic-ink display device or sensor) on a wireless communication network having one or more wireless network routers and a network controller, while minimizing the RF power transmitted by the wireless routers and wireless coordinator to the wireless end-devices.
    Type: Application
    Filed: January 13, 2009
    Publication date: July 15, 2010
    Inventors: Steven Essinger, Michael Schnee
  • Publication number: 20100177080
    Abstract: A wireless electronic-ink based display device employing thermal packaging for cold outdoor-weather applications, comprising a power source module, a processor, a RF transceiver, and a power management module mounted on the first side of a printed circuit board (PCB) structure, while an addressable electronic-ink based display module is mounted on the second side of the PCB structure, and a thermal-insulation weather-sealed packaging is provided about the addressable electronic-ink based display structure and the PCB structure. To accommodate hot outdoor weather environments, a heat-dissipative thermal radiator is mounted to the first side of the PCB, and in thermal communication with the addressable electronic-ink based display structure and the PCB structure.
    Type: Application
    Filed: January 13, 2009
    Publication date: July 15, 2010
    Inventors: Steven Essinger, Michael Schnee
  • Patent number: 7731091
    Abstract: A digital image capturing and processing system for illuminating objects using automatic object detection and spectral-mixing illumination technique. The system comprises an area-type illumination and imaging module for projecting a coextensive area-type illumination and imaging field (i.e. zone) into a 3D imaging volume during object illumination and imaging operations. The area-type illumination and imaging module includes a spectral-mixing based illumination subsystem for producing a first field of visible illumination from an array of visible LEDs, and producing a second field of invisible illumination from an array of infrared (IR) LEDs, wherein the first and second fields of illumination spatially overlap and intermix with each other and produce a composite illumination field that is at least substantially coextensive with the FOV of the image sensing array.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: June 8, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7665665
    Abstract: A digital illumination and imaging system employing one or more planar laser illumination modules (PLIMs) each including: (i) a laser illumination source driven preferably by high frequency modulated (HFM) diode current drive circuitry; (ii) a beam collimating optics disposed beyond the laser source; (ii) an optical beam multiplexer (OMUX) device disposed beyond the collimating optics; and (iv) a planarizing-type illumination lens array disposed beyond the OMUX device, and arranged for generating a plurality of substantially planar coherence-reduced laser illumination beams (PLIBs) that form a composite substantially planar laser illumination beam (PLIB) having substantially reduced spatial/temporal coherence. A digital image detection array for detecting digital images of an object illuminated by the composite substantially planar laser illumination beam.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: February 23, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7661597
    Abstract: A coplanar laser illumination and imaging subsystem deployable in an image capturing and processing system, and including an image formation and detection (IFD) subsystem having an image sensing array and optics providing a field of view (FOV) on the image sensing array, and forming an image of an object within the FOV and detecting said image on the image sensing array and producing a digital image thereof. The system includes a spectral-mixing based illumination subsystem having an array of VLDs for producing a visible illumination beam, and an array of infrared (IR) laser diodes (LDs) for producing an invisible illumination beam. The visible and invisible illumination beams spatially overlaps and spatially/temporally intermixes with each other to produce a composite spectrally-mixed illumination beam having a relative power ratio of visible illumination to invisible illumination (VIS/IR), and is substantially coplanar with the FOV of said image sensing array.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: February 16, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7614560
    Abstract: A method of illuminating objects using adaptively controlled mixing of spectral illumination energy to form and detect digital images of objects at a POS. The method comprises providing, at a POS environment, a digital image capture and processing system having a system housing with an imaging window, and an area-type illumination and imaging station disposed within said system housing, for projecting a coextensive area-type illumination and imaging field (i.e. zone) through said imaging window into a 3D imaging volume during object illumination and imaging operations. As the object is moved through the 3D imaging volume, its motion is automatically detected, and signals indicative of said detected object motion are generated. In response to the generated signals, a first field of visible illumination is produced from an array of visible LEDs, simultaneously with a second field of invisible illumination from a array of infrared (IR) LEDs.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: November 10, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7588188
    Abstract: A digital image capturing and processing system including an image formation and detection (IFD) subsystem having a linear image sensing array and optics providing a field of view (FOV) on the linear image sensing array. A spectral-mixing based illumination subsystem produces a first field of visible laser illumination produced from an array of visible VLDs, and a second field of invisible laser illumination produced from an array of IR laser diodes (LDs) that spatially overlap and intermix with each other so as to produce a composite planar laser illumination beam which is substantially with the FOV of the linear image sensing array. An illumination control subsystem controls the spectral mixing of visible and invisible laser illumination produced from the spectral-mixing based illumination subsystem, by adaptively controlling the relative power ratio (VIS/IR) of said fields of visible and invisible laser illumination.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: September 15, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7575170
    Abstract: A method of illuminating objects using adaptively controlled mixing of spectral illumination energy to form and detect digital images of objects at POS environments with sufficiently high image contrast and quality. The method comprises providing, at a POS environment, a digital image capture and processing system having a system housing with an imaging window, and a coplanar illumination and imaging station disposed within said system housing, for projecting a coplanar illumination and imaging plane through the imaging window into an imaging volume during object illumination and imaging operations. As the object is moved through the imaging volume, its motion is automatically detected, and signals indicative of said detected object are generated. In response to the generated signals, a first field of visible illumination is produced from an array of visible laser diodes (VLDs), simultaneously with a second field of invisible illumination from a array of infrared (IR) laser diodes (LDs).
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: August 18, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7571858
    Abstract: A POS-based digital image capturing and processing system for illuminating objects using automatic object detection and spectral-mixing illumination technique. The system comprises a coplanar illumination and imaging station for projecting at least one coplanar illumination and imaging plane into an imaging volume during object illumination and imaging operations. The coplanar illumination and imaging station includes an illumination subsystem for producing a first field of visible illumination from an array of visible VLDs, and producing a second field of invisible illumination from an array of infrared (IR) laser diodes (IR-LDs). Wherein the first and second fields of illumination spatially overlap and intermix with each other and are substantially coplanar with the FOV of the linear image sensing array.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: August 11, 2009
    Assignee: Metrologic INstruemtns, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7546952
    Abstract: A method of illuminating objects using adaptively controlled mixing of spectral illumination energy to form and detect digital images of objects at POS environments with sufficiently high image contrast and quality. The method comprises provides, at a POS environment, a digital image capture and processing system having a system housing with an imaging window, and an area-type illumination and imaging station disposed within said system housing, for projecting a coextensive area-type illumination and imaging field (i.e. zone) through said imaging window into a 3D imaging volume during object illumination and imaging operations. As the object is moved through the 3D imaging volume, its motion is automatically detected, and signals indicative of said detected object motion are generated. In response to the generated signals, a first field of visible illumination is produced from an array of visible LEDs, simultaneously with a second field of invisible illumination from a array of infrared (IR) LEDs.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: June 16, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Publication number: 20090134221
    Abstract: A tunnel-type digital imaging-based system capable of generating and projecting coplanar and/or coextensive illumination and imaging planes or zones into a 3D imaging volume within a tunnel structure. The system includes a tunnel housing structure which is supported above a package conveyor in a retail environment, and employs automatic package detection, identification, profiling/dimensioning, weighing, tracking and correlating techniques during self-checkout and/or cashier-assisted operations for achieving increased levels of efficiency and productivity.
    Type: Application
    Filed: September 11, 2008
    Publication date: May 28, 2009
    Inventors: Xiaoxun Zhu, Tao Xian, Jie Ren, John Gardner, Sean Kearney, Timothy Good, Michael Schnee, Yong Liu, Patrick Giordano, Liang Wang, JiBin Liu, Ming Zhuo, Steven Essinger, Konstantin Yakovlev, Anatoly Kotlarsky, Xi Tao, Jun Lu, Ka Man Au, Duane Ellis, C. Harry Knowles
  • Publication number: 20090101719
    Abstract: A digital image capturing and processing system including a system housing having an imaging window; illumination and imaging stations for generating and projecting illumination and imaging planes or zones through the imaging window, and into a 3D imaging volume definable relative to the imaging window, for digital imaging an object passing through the 3D imaging volume, and generating digital linear images of the object as the object intersects the illumination and imaging planes or zones during system operation. A digital image processor processes the digital images and automatically recognizes graphical intelligence (e.g. bar code symbols, alphanumeric characters etc) graphically represented in the digital images.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 23, 2009
    Applicant: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Publication number: 20090101718
    Abstract: A digital image capturing and processing system for illuminating objects using automatic object detection and spectral-mixing illumination technique. The system comprises an area-type illumination and imaging module for projecting a coextensive area-type illumination and imaging field (i.e. zone) into a 3D imaging volume during object illumination and imaging operations. The area-type illumination and imaging module includes a spectral-mixing based illumination subsystem for producing a first field of visible illumination from an array of visible LEDs, and producing a second field of invisible illumination from an array of infrared (IR) LEDs, wherein the first and second fields of illumination spatially overlap and intermix with each other and produce a composite illumination field that is at least substantially coextensive with the FOV of the image sensing array.
    Type: Application
    Filed: October 24, 2007
    Publication date: April 23, 2009
    Applicant: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Publication number: 20090065584
    Abstract: A POS-based digital image capturing and processing system for illuminating objects using automatic object detection and spectral-mixing illumination technique. The system comprises an area-type illumination and imaging station for projecting a coextensive area-type illumination and imaging field (i.e. zone) into a 3D imaging volume during object illumination and imaging operations. The area-type illumination and imaging station includes an illumination subsystem for producing a first field of visible illumination from an array of visible LEDs, and producing a second field of invisible illumination from an array of infrared (IR) LEDs. wherein the first and second fields of illumination spatially overlap and intermix with each other and are substantially coextensive with the FOV of the image sensing array.
    Type: Application
    Filed: October 24, 2007
    Publication date: March 12, 2009
    Applicant: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Publication number: 20080283611
    Abstract: Digital image capture and processing systems and methods for generating and projecting coplanar illumination and imaging planes and/or coextensive area-type illumination and imaging zones, through one or more imaging windows, and into a 3D imaging volume in a retail POS environments, while employing automatic object motion and/or velocity detection, real-time image analysis and other techniques to capture and processing high-quality digital images of objects passing through the 3D imaging volume, and intelligently controlling and/or managing the use of visible and invisible forms of illumination, during object illumination and imaging operations, that might otherwise annoy or disturb human operators and/or customers working and/or shopping in such retail environments.
    Type: Application
    Filed: July 19, 2007
    Publication date: November 20, 2008
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Publication number: 20080252985
    Abstract: A tunnel-type digital imaging-based self-checkout system capable of generating and projecting coplanar illumination and imaging planes into a 3D imaging volume within a tunnel structure. The tunnel structure is supported above a package conveyor in a retail POS environment, and employs automatic package identification, profiling and tracking techniques during self-checkout operations.
    Type: Application
    Filed: September 12, 2007
    Publication date: October 16, 2008
    Inventors: Xiaoxun Zhu, Anatoly Kotlarsky, Tao Xian, Timothy Good, Jie Ren, Yong Liu, Konstantin Yakovlev, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis, C. Harry Knowles
  • Publication number: 20080249884
    Abstract: A POS-centric digital imaging system for installation at a retail point of sale (POS) station having a countertop surface. The POS-centric digital imaging system includes a system housing having at least one imaging window, and providing a cashier side and a customer side for the POS-centric digital imaging system. An omni-directional digital image capturing and processing subsystem is disposed in the system housing, for generating a 3D imaging volume adjacent the imaging window. A cashier/customer terminal is integrated within the system housing, for simultaneously supporting (i) cashier product scanning/imaging and checkout operations on said cashier side, and (ii) customer payment and other services on said customer side.
    Type: Application
    Filed: October 30, 2007
    Publication date: October 9, 2008
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Publication number: 20080185439
    Abstract: A digital illumination and imaging system employing one or more planar laser illumination modules (PLIMs) each including: (i) a laser illumination source driven preferably by high frequency modulated (HFM) diode current drive circuitry; (ii) a beam collimating optics disposed beyond the laser source; (ii) an optical beam multiplexer (OMUX) device disposed beyond the collimating optics; and (iv) a planarizing-type illumination lens array disposed beyond the OMUX device, and arranged for generating a plurality of substantially planar coherence-reduced laser illumination beams (PLIBs) that form a composite substantially planar laser illumination beam (PLIB) having substantially reduced spatial/temporal coherence. A digital image detection array for detecting digital images of an object illuminated by the composite substantially planar laser illumination beam.
    Type: Application
    Filed: October 30, 2007
    Publication date: August 7, 2008
    Applicant: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Publication number: 20080169348
    Abstract: A method of illuminating objects using adaptively controlled mixing of spectral illumination energy to form and detect digital images of objects at POS environments with sufficiently high image contrast and quality. The method comprises providing, at a POS environment, a digital image capture and processing system having a system housing with an imaging window, and a coplanar illumination and imaging station disposed within said system housing, for projecting a coplanar illumination and imaging plane through the imaging window into an imaging volume during object illumination and imaging operations. As the object is moved through the imaging volume, its motion is automatically detected, and signals indicative of said detected object are generated. In response to the generated signals, a first field of visible illumination is produced from an array of visible laser diodes (VLDs), simultaneously with a second field of invisible illumination from a array of infrared (IR) laser diodes (LDs).
    Type: Application
    Filed: October 29, 2007
    Publication date: July 17, 2008
    Applicant: Metrologic Instruments, inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis