Patents by Inventor Steven Feeny

Steven Feeny has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070284160
    Abstract: A rider surface maintenance vehicle with variable dynamic braking, in contrast to a mechanically-engaged braking system that uses a brake cable. A brake pedal engages a sensor that encodes the pedal position as an electronic signal. The electronic signal, along with the vehicle velocity, determines a machine deceleration rate, or braking rate, either by calculation, lookup table, or a combination of the two. The braking rate may be tuned so that the of the brake mimics or approximates the feel of a conventional mechanically-engaged brake that uses a brake cable. During stopping, once the vehicle passes below a threshold velocity, a parking brake is automatically engaged. The braking rate is converted to a duty cycle, and the braking is preferably accomplished by pulse width modulation (PWM) of an electrical load applied in parallel to the motor.
    Type: Application
    Filed: July 10, 2007
    Publication date: December 13, 2007
    Inventors: Peter Loring, Steven Feeny, Robert Erko, Paul Groschen, Richard Milun
  • Publication number: 20050194837
    Abstract: A rider surface maintenance vehicle with variable dynamic braking, in contrast to a mechanically-engaged braking system that uses a brake cable. A brake pedal engages a sensor that encodes the pedal position as an electronic signal. The electronic signal, along with the vehicle velocity, determines a machine deceleration rate, or braking rate, either by calculation, lookup table, or a combination of the two. The braking rate may be tuned so that the of the brake mimics or approximates the feel of a conventional mechanically-engaged brake that uses a brake cable. During stopping, once the vehicle passes below a threshold velocity, a parking brake is automatically engaged. The braking rate is converted to a duty cycle, and the braking is preferably accomplished by pulse width modulation (PWM) of an electrical load applied in parallel to the motor.
    Type: Application
    Filed: March 7, 2005
    Publication date: September 8, 2005
    Applicant: Tennant
    Inventors: Peter Loring, Steven Feeny, Robert Erko, Paul Groschen, Richard Milun