Patents by Inventor Steven G. Goebel

Steven G. Goebel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130209907
    Abstract: A system and method for reducing the corrosive effects of an air/hydrogen front in a fuel cell stack. The method includes shutting down the fuel cell stack and then initiating a hydrogen sustaining process where hydrogen is periodically injected into an anode side of the fuel cell stack while the stack is shut down for a predetermined period of time. The method determines that the hydrogen sustaining process has ended, and then purges the anode side and a cathode side of the fuel cell stack with air after the hydrogen sustaining process has ended and the stack is still shut-down.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Steven G. Goebel
  • Patent number: 8507152
    Abstract: A method of making a reconstructed electrode having a plurality of nanostructured thin catalytic layers is provided. The method includes combining a donor decal comprising at least one nanostructured thin catalytic layer on a substrate with an acceptor decal comprising a porous substrate and at least one nanostructured thin catalytic layer. The donor decal and acceptor decal are bonded together using a temporary adhesive, and the donor substrate is removed. The temporary adhesive is then removed with appropriate solvents. Catalyst coated proton exchange membranes and catalyst coated diffusion media made from the reconstructed electrode decals having a plurality of nanostructured thin catalytic layers are also described.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: August 13, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Steven G. Goebel, Matthew Dioguardi
  • Patent number: 8470491
    Abstract: A fluid distribution insert adapted to be received within an inlet header of a fuel cell assembly. The fluid distribution insert includes a hollow insert with a first end and a second end. An inlet is formed at the first end of the hollow insert in fluid communication with a source of a reactant gas and adapted to receive the reactant gas therein. An outlet is formed intermediate the first end and the second end. The outlet is adapted to deliver the reactant gas to a plurality of fuel cells of the fuel cell assembly, wherein the hollow insert delivers the reactant gas to the fuel cells in a substantially simultaneous and uniform manner.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: June 25, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel P. Miller, Anthony G. Chinnici, Steven G. Goebel, Daniel J. Darga, Gary M. Robb, Clipson M. Class
  • Patent number: 8450025
    Abstract: A fuel cell system that enables an assisted anode purge upon start-up is provided. The fuel cell system includes a fuel cell stack having a plurality of fuel cells with anodes and cathodes. The fuel cell stack has an anode supply manifold and an anode exhaust manifold in fluid communication with the anodes. The fuel cell system further includes a suction device in fluid communication with at least one of the anode supply manifold and the anode exhaust manifold. The suction device adapted to selectively draw a partial vacuum on the fuel cell stack during a start-up of the fuel cell system. Methods for starting the fuel cell system are also provided.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: May 28, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Joe C. Machuca, Charles Mackintosh, Gary M. Robb, Steven G. Goebel
  • Patent number: 8440359
    Abstract: A method for filling a fuel cell system with a fuel during start-up is disclosed, the method including the steps of providing a fuel cell stack having a plurality of fuels cells, each fuel cell having an active area, the fuel cell stack including an anode supply manifold and an anode exhaust manifold, the anode supply manifold and in fluid communication with a source of fuel; providing an anode sub-system in fluid communication with an anode side of the fuel cell stack; and supplying the fuel to the fuel cell stack substantially uniformly and substantially simultaneously to compress any fluids in the fuel cell stack into a volume between an end of each active area adjacent to the anode exhaust manifold and an outlet of the anode sub-system.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: May 14, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Gary M. Robb, Steven G. Goebel, Daniel I. Harris
  • Patent number: 8431278
    Abstract: A passive water drain for removal of water from a fuel cell system is disclosed, the drain including a main body having a cavity formed therein, an interior element, and a hydrophilic porous media. The passive water drain is adapted to simplify the anode reactant recycler, eliminate the need for bypass valve systems used to remove water from the cathode exhaust, and eliminate the need for condensate draining systems used for compressed air entering the cathode.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: April 30, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven G. Goebel, William H. Pettit
  • Patent number: 8394548
    Abstract: A seal structure is disclosed for forming a substantially fluid tight seal between a UEA and a plate of a fuel cell system, the seal structure including a sealing member formed in one fuel cell plate, a seal support adapted to span feed area channels in an adjacent fuel cell plate, and a seal adapted to cooperate with a UEA disposed between the fuel cell plates, the sealing member, and the seal support to form a substantially fluid tight seal between the UEA and the one fuel cell plate. The seal structure militates against a leakage of fluids from the fuel cell system, facilitates the maintenance of a velocity of a reactant flow in the fuel cell system, and a cost thereof is minimized.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: March 12, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Jeffrey A. Rock, Gerald W. Fly, Steven G. Goebel, Jeff D. Williams
  • Patent number: 8389182
    Abstract: A bipolar plate assembly is described. The coolant passage on either the anode side or the cathode side includes a material having a low thermal conductivity. Fuel cells containing the bipolar plate assembly and methods of making the bipolar plate assembly are also described.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: March 5, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Jon P. Owejan, Steven G. Goebel
  • Patent number: 8387441
    Abstract: A method for determining the amount of fuel flow from a high pressure gas tank to the anode side of a fuel cell stack through pulsed injector. The anode sub-system pressure is measured just before the injector pulse and just after injector pulse and a difference between the pressures is determined. The difference between the pressures, the volume of the anode sub-system, the ideal gas constant, the anode sub-system temperature, the fuel consumed from the reaction in the fuel cell stack during the injection event and the fuel cross-over through membranes in the fuel cells of the fuel cell stack are used to determine the amount of hydrogen gas injected by the injector.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: March 5, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven R. Falta, Steven G. Goebel, Daniel C. Di Fiore, Ralf Senner
  • Patent number: 8372556
    Abstract: A fuel cell having a pair of bipolar plates is provided. Each of the bipolar plates has a nested active area and a non-nested feed area which also may serve as active area. An electrolyte membrane is disposed between a pair of electrodes and a pair of diffusion medium layers. Each of the diffusion medium layers is disposed adjacent the nested active areas and non-nested feed areas of the bipolar plates. A porous, electrically conductive spacer is disposed between one of the diffusion medium layers and one of the bipolar plates. A fuel cell stack having the fuel cell is also provided.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: February 12, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Steven G. Goebel
  • Patent number: 8367270
    Abstract: A fuel cell comprising anode and cathode flow field plates having a multitude of flow channels separated by land features wherein the land features of the anode side are wider than the land features of the cathode side is disclosed. In fuel cells, the flow field plate arrangement of the present invention provides higher power (lower cost per kW), improved durability, and less stringent assembly alignment.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: February 5, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven G. Goebel, Daniel Miller, Matthew J. Beutel
  • Patent number: 8367260
    Abstract: A remedial method for starting a fuel cell system is described. The method includes determining if the remedial method is required; providing air to an exhaust of a fuel cell stack; setting a hydrogen flow rate to an anode side of the fuel cell stack; providing a predetermined volume of hydrogen to the anode side of the fuel cell at the hydrogen flow rate; providing a predetermined volume of air to a cathode side of the fuel cell stack after the predetermined volume of hydrogen has been provided to the anode side while continuing to provide air to the exhaust of the fuel cell stack and hydrogen to the anode side of the fuel cell stack; determining if a stack voltage is stable after the predetermined volume of air has been provided to the cathode side; and closing the anode outlet valve after the stack voltage is stable.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: February 5, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Seth E. Lerner, Akbar Chowdhury, Steven G. Goebel
  • Publication number: 20120270118
    Abstract: An anode reactant recycling system for a fuel cell is disclosed, the system including a hollow main body, a bleed conduit, an injector, a water separator, and a hydrophilic porous media. The anode reactant recycling system for a fuel cell is configured to minimize a required number of components, eliminate the need for the anode heat exchanger, use a single valve for removal of condensate and reactant byproducts from the anode reactant recycling system, and provide an upstream volume for startup pressurization.
    Type: Application
    Filed: July 9, 2012
    Publication date: October 25, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC.
    Inventors: Steven G. Goebel, Steven R. Falta, Jon P. Owejan
  • Patent number: 8277988
    Abstract: An anode reactant recycling system for a fuel cell is disclosed, the system including a hollow main body, a bleed conduit, an injector, a water separator, and a hydrophilic porous media. The anode reactant recycling system for a fuel cell is adapted to minimize a required number of components, eliminate the need for the anode heat exchanger, use a single valve for removal of condensate and reactant byproducts from the anode reactant recycling system, and provide an upstream volume for startup pressurization.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 2, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven G. Goebel, Steven R. Falta, Jon P. Owejan
  • Publication number: 20120244451
    Abstract: A fuel cell component includes a first fluid distribution layer, a second fluid distribution layer, a cap layer, a third fluid distribution layer, and a pair of fluid diffusion medium layers. The individual layers are polymeric, mechanically integrated, and formed from a radiation-sensitive material. The first fluid distribution layer, the second fluid distribution layer, the cap layer, the third fluid distribution layer, and the pair of fluid diffusion medium layers are coated with an electrically conductive material. A pair of the fuel cell components may be arranged in a stack with a membrane electrode assembly therebetween to form a fuel cell.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 27, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jeffrey A. Rock, Steven G. Goebel, Gerald W. Fly, Alan J. Jacobsen, Joanna A. Kolodziejska, Hung D. Nguyen
  • Patent number: 8273491
    Abstract: Methods and systems of reducing the start-up time for a fuel cell are described. One method of reducing the start-up time includes: concurrently supporting load requests for the fuel cell and stabilizing the voltage of the fuel cell; wherein stabilizing the voltage of the fuel cell comprises: providing a flow of hydrogen to the fuel cell and opening an anode valve, wherein the hydrogen flow continues for predetermined volume or a predetermined time; and ending voltage stabilization after the predetermined volume or predetermined time is exceeded while continuing to support load requests for the fuel cell.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: September 25, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Akbar Chowdhury, Seth E. Lerner, Steven G. Goebel
  • Publication number: 20120231370
    Abstract: A seal structure is disclosed for forming a substantially fluid tight seal between a UEA and a plate of a fuel cell system, the seal structure including a sealing member formed in one fuel cell plate, a seal support adapted to span feed area channels in an adjacent fuel cell plate, and a seal adapted to cooperate with a UEA disposed between the fuel cell plates, the sealing member, and the seal support to form a substantially fluid tight seal between the UEA and the one fuel cell plate. The seal structure militates against a leakage of fluids from the fuel cell system, facilitates the maintenance of a velocity of a reactant flow in the fuel cell system, and a cost thereof is minimized.
    Type: Application
    Filed: May 24, 2012
    Publication date: September 13, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jeffrey A. Rock, Gerald W. Fly, Steven G. Goebel, Jeff D. Williams
  • Publication number: 20120202132
    Abstract: A device for minimizing a buoyancy driven convective flow inside a manifold of a fuel cell stack includes a plurality of spaced apart baffle walls. The spaced apart baffle walls are configured to be disposed inside the manifold of the fuel cell stack. The spaced apart baffle walls increase a viscous resistance to the buoyancy driven convective flow inside the manifold.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 9, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Todd D. Bogumil, Steven D. Burch, Steven G. Goebel, Eric J. Connor, Glenn W. Skala
  • Patent number: 8232014
    Abstract: A method for reducing the probability of an air/hydrogen front in a fuel cell stack is disclosed that includes closing anode valves for an anode side of the fuel cell stack to permit a desired quantity of hydrogen to be left in the anode side upon shutdown and determining a schedule to inject hydrogen during the time the fuel cell stack is shutdown. The pressure on an anode input line is determined and a discrete amount of hydrogen is injected into the anode side of the stack according to the determined schedule by opening anode input line valves based on the determined pressure along the anode input line so as to inject the hydrogen into the anode side of the stack.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: July 31, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: David A. Arthur, Dieter Kaimann, Thomas W. Tighe, Steven G. Goebel, John P. Salvador, Gary M. Robb, Daniel I. Harris, Joseph Nicholas Lovria, Balasubramanian Lakshmanan, Daniel T. Folmsbee
  • Patent number: 8211585
    Abstract: A seal structure is disclosed for forming a substantially fluid tight seal between a UEA and a plate of a fuel cell system, the seal structure including a sealing member formed in one fuel cell plate, a seal support adapted to span feed area channels in an adjacent fuel cell plate, and a seal adapted to cooperate with a UEA disposed between the fuel cell plates, the sealing member, and the seal support to form a substantially fluid tight seal between the UEA and the one fuel cell plate. The seal structure militates against a leakage of fluids from the fuel cell system, facilitates the maintenance of a velocity of a reactant flow in the fuel cell system, and a cost thereof is minimized.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: July 3, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jeffrey A. Rock, Gerald W. Fly, Steven G. Goebel, Jeff D. Williams