Patents by Inventor Steven G. Widen

Steven G. Widen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180117180
    Abstract: The invention is a general method for improving the performance of the DNA-based vaccines. The method utilizes a complex DNA-generated profile of antigens to extend the effects of DNA-based vaccines and to broaden the immune response. This broadened immune response in turn improves the protection of the recipient from divergent (but related) strains of a pathogen. In addition, it effectively improves the efficacy of DNA-based vaccines used for treatment of viral diseases, including acquired immunity disorder (AIDS). One embodiment, where the target viral pathogen is HIV (the causative agent for aids), the method identifies an orderly set of plasmids of related sequences that may be used to prime a broad and strong immune response to HLA-restricted viral antigens. This mixture of plasmids is thus capable of priming an appropriate immune response to reduce the viral burden in HIV infected patients or to protect uninfected patients from HIV infection.
    Type: Application
    Filed: June 27, 2017
    Publication date: May 3, 2018
    Inventors: Alfred W. Lasher, Joseph D. Kittle, JR., Steven G. Widen
  • Patent number: 9834770
    Abstract: DNA aptamers are high affinity ligands selected by genetic enrichment techniques to bind to specific protein targets. Because these represent chemically stable and reproducible molecules, they have application as affinity reagents and/or therapeutic drugs to affect the target protein's actions. NF-kB is an important mediator of the innate immune response and mediator of tissue inflammation. Although RNA and double stranded DNA aptamers have been identified to bind to the NF-kB family of proteins, the present invention represents the first identification of single stranded DNA aptamers that recognize NFkB RelA. The aptamers disclosed herein bind to several distinct regions of RelA and may be useful to antagonize the DNA binding of RelA as an inhibitor of cellular inflammation, visualize the location or amount of RelA in tissues from pathological conditions, or to quantitatively measure the activated state of RelA by affinity binding.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: December 5, 2017
    Assignee: Board of Regents, The University of Texas System
    Inventors: Steven G. Widen, Thomas G. Wood, Allan R. Brasier, Yingxin Zhao
  • Publication number: 20150259687
    Abstract: DNA aptamers are high affinity ligands selected by genetic enrichment techniques to bind to specific protein targets. Because these represent chemically stable and reproducible molecules, they have application as affinity reagents and/or therapeutic drugs to affect the target protein's actions. NF-kB is an important mediator of the innate immune response and mediator of tissue inflammation. Although RNA and double stranded DNA aptamers have been identified to bind to the NF-kB family of proteins, the present invention represents the first identification of single stranded DNA aptamers that recognize NFkB RelA. The aptamers disclosed herein bind to several distinct regions of RelA and may be useful to antagonize the DNA binding of RelA as an inhibitor of cellular inflammation, visualize the location or amount of RelA in tissues from pathological conditions, or to quantitatively measure the activated state of RelA by affinity binding.
    Type: Application
    Filed: March 30, 2015
    Publication date: September 17, 2015
    Inventors: Steven G. Widen, Thomas G. Wood, Allan R. Brasier, Yingxin Zhao
  • Patent number: 9018367
    Abstract: DNA aptamers are high affinity ligands selected by genetic enrichment techniques to bind to specific protein targets. Because these represent chemically stable and reproducible molecules, they have application as affinity reagents and/or therapeutic drugs to affect the target protein's actions. NF-kB is an important mediator of the innate immune response and mediator of tissue inflammation. Although RNA and double stranded DNA aptamers have been identified to bind to the NF-kB family of proteins, the present invention represents the first identification of single stranded DNA aptamers that recognize NFkB RelA. The aptamers disclosed herein bind to several distinct regions of RelA and may be useful to antagonize the DNA binding of RelA as an inhibitor of cellular inflammation, visualize the location or amount of RelA in tissues from pathological conditions, or to quantitatively measure the activated state of RelA by affinity binding.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: April 28, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Steven G. Widen, Thomas G. Wood, Allan R. Brasier, Yingxin Zhao
  • Publication number: 20120263651
    Abstract: DNA aptamers are high affinity ligands selected by genetic enrichment techniques to bind to specific protein targets. Because these represent chemically stable and reproducible molecules, they have application as affinity reagents and/or therapeutic drugs to affect the target protein's actions. NF-kB is an important mediator of the innate immune response and mediator of tissue inflammation. Although RNA and double stranded DNA aptamers have been identified to bind to the NF-kB family of proteins, the present invention represents the first identification of single stranded DNA aptamers that recognize NFkB RelA. The aptamers disclosed herein bind to several distinct regions of RelA and may be useful to antagonize the DNA binding of RelA as an inhibitor of cellular inflammation, visualize the location or amount of RelA in tissues from pathological conditions, or to quantitatively measure the activated state of RelA by affinity binding.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 18, 2012
    Applicant: Board of Regents, The University of Texas System
    Inventors: Steven G. Widen, Thomas G. Wood, Allan R. Brasier, Yingxin Zhao
  • Publication number: 20030228327
    Abstract: The invention is a general method for improving the performance of the DNA-based vaccines. The method utilizes a complex DNA-generated profile of antigens to extend the effects of DNA-based vaccines and to broaden the immune response. This broadened immune response in turn improves the protection of the recipient from divergent (but related) strains of a pathogen. In addition, it effectively improves the efficacy of DNA-based vaccines used for treatment of viral diseases, including acquired immunity disorder (AIDS). One embodiment, where the target viral pathogen is HIV (the causative agent for aids), the method identifies an orderly set of plasmids of related sequences that may be used to prime a broad and strong immune response to HLA-restricted viral antigens. This mixture of plasmids is thus capable of priming an appropriate immune response to reduce the viral burden in HIV infected patients or to protect uninfected patients from HIV infection.
    Type: Application
    Filed: November 4, 2002
    Publication date: December 11, 2003
    Inventors: Alfred W. Lasher, Joseph D. Kittle, Steven G. Widen