Patents by Inventor Steven Gronemeyer

Steven Gronemeyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10502838
    Abstract: Methods, systems, and devices for monitoring a Real Time Clock (RTC) oscillator using Digital Signal Processing (DSP), where a resistance/capacitance (RC) oscillator is configured to output a digital pulse signal and a digital RTC Monitor Integrated Circuit (IC) is configured to monitor the RTC oscillator timing signal using the RC oscillator signal. In one aspect, the RTC Monitor IC includes an RTC input configured to receive the RTC oscillator timing signal; an RC input configured to receive the RC oscillator digital pulse signal; and an RTC reset output configured to output an RTC reset signal when a comparison of the RTC and RC oscillator inputs show the RTC oscillator has missed one or more clock cycles. A single wire input/output for both reset and interrupt signals between circuits is also described.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: December 10, 2019
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Daniel Babitch, Steven A Gronemeyer, Nicolas Vantalon
  • Publication number: 20170242130
    Abstract: Methods, systems, and devices for monitoring a Real Time Clock (RTC) oscillator using Digital Signal Processing (DSP), where a resistance/capacitance (RC) oscillator is configured to output a digital pulse signal and a digital RTC Monitor Integrated Circuit (IC) is configured to monitor the RTC oscillator timing signal using the RC oscillator signal. In one aspect, the RTC Monitor IC includes an RTC input configured to receive the RTC oscillator timing signal; an RC input configured to receive the RC oscillator digital pulse signal; and an RTC reset output configured to output an RTC reset signal when a comparison of the RTC and RC oscillator inputs show the RTC oscillator has missed one or more clock cycles. A single wire input/output for both reset and interrupt signals between circuits is also described.
    Type: Application
    Filed: May 10, 2017
    Publication date: August 24, 2017
    Inventors: Daniel BABITCH, Steven A. GRONEMEYER, Nicolas VANTALON
  • Patent number: 9651676
    Abstract: Methods, systems, and devices for monitoring a Real Time Clock (RTC) oscillator using Digital Signal Processing (DSP), where a resistance/capacitance (RC) oscillator is configured to output a digital pulse signal and a digital RTC Monitor Integrated Circuit (IC) is configured to monitor the RTC oscillator timing signal using the RC oscillator signal. In one aspect, the RTC Monitor IC includes an RTC input configured to receive the RTC oscillator timing signal; an RC input configured to receive the RC oscillator digital pulse signal; and an RTC reset output configured to output an RTC reset signal when a comparison of the RTC and RC oscillator inputs show the RTC oscillator has missed one or more clock cycles. A single wire input/output for both reset and interrupt signals between circuits is also described.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: May 16, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Daniel Babitch, Steven A Gronemeyer, Nicolas Vantalon
  • Patent number: 9322926
    Abstract: According to certain aspects, the invention includes using acquisition channel results from a number of satellites to achieve composite weak acquisition. According to certain other aspects, the invention also includes solving for an improved position estimate and, with a sufficiently accurate, either initial or improved position estimate, also solving for GPS system time using a composite of acquired signals from a plurality of satellites. Within commonly experienced initial position and time uncertainties, the geometric range changes are fairly linear, which allows the point of convergence of ranges to solve for GPS position and subsequently for time with reasonable accuracy, which is the equivalent to obtaining frame sync without any data demodulation or preamble matching.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: April 26, 2016
    Assignee: QUALCOMM TECHNOLOGIES INTERNATIONAL, LTD.
    Inventors: Phanikrishna Sagiraju, Steven Gronemeyer
  • Patent number: 9322925
    Abstract: GPS navigation devices or GPS receivers can consume less power by using a temperature recorder circuit and/or a power manager in calculating the accuracies of the GPS system time and reference frequency to improve battery life. A representative receiver includes a time reference device that generates data associated with a GPS system time, and a temperature recorder circuit that operates using the generated data from the time reference device and monitors the temperature of the time reference device while the receiver hibernates. The receiver further includes memory including a power manager that has instructions, which are processed by a processing device after the receiver wakes up. The instructions associated with the power manager include determining if the temperature recorder circuit sent a wake-up signal, reading data from the temperature recorder circuit, and adjusting parameters associated with at least one of the following: the time reference device and the temperature recorder circuit.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: April 26, 2016
    Assignee: Qualcomm Technologies International, Ltd.
    Inventors: Daniel Babitch, Steven A. Gronemeyer
  • Patent number: 9287921
    Abstract: A method for soft frame synchronization in a navigational receiver is provided. A distance between bits of a sync pattern received by the navigational receiver and a known sync pattern is computed. A probability of detection value for the received sync pattern based on the distance is assigned. A confidence level for the received sync pattern using the probability of detection value is computed. The confidence level is compared with a confidence threshold. If the confidence level is greater than or equal to the confidence threshold, the confidence level of the received sync pattern is updated to generate a credibility of the sync pattern. The credibility of the received sync pattern is compared with a predetermined credibility value and, if the credibility of the received sync pattern is greater than or equal to the predetermined credibility value, synchronization of the navigational receiver is performed using the received sync pattern.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: March 15, 2016
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Mohamed Youssef, Bruce McCullough, Steven Gronemeyer
  • Patent number: 9262487
    Abstract: Methods, systems, and apparatuses for a portable device capable of receiving satellite navigational system signals to retrieve visibility mask information corresponding to the portable device's current location and/or trajectory are described.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: February 16, 2016
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Mohamed Youssef, Andi Jakupi, Bruce McCullough, Steven Gronemeyer
  • Patent number: 9176234
    Abstract: GPS navigation devices or GPS receivers can consume less power by using a temperature recorder circuit and/or a power manager in maintaining the accuracies of the GPS receiver time and reference frequency to improve battery life. A representative receiver includes a time reference device and the temperature recorder circuit that operate while the receiver hibernates. The time reference device generates clock signals and the temperature recorder circuit receives and operates using the clock signals from the time reference device. The temperature recorder senses the temperature of the time reference device. The temperature recorder circuit is designed to send a wake-up signal to at least one electrical component of the receiver to wake up the electrical component of the receiver. The electrical component of the receiver includes at least one of the following: a GPS signal processing system and a frequency reference device.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: November 3, 2015
    Assignee: QUALCOMM TECHNOLOGIES INTERNATIONAL, LTD.
    Inventors: Daniel Babitch, Steven A. Gronemeyer, Peter Naji
  • Patent number: 9151845
    Abstract: The present system relates to a GNSS receiver that includes a processor. The processor is configured to receive a temperature signal from a temperature sensor indicating an operating temperature of an resonator. The processor is also configured to compute a frequency and a frequency correction data of the resonator based on the temperature and a frequency model of the resonator. The processor then transmits the frequency correction data to an RF receiver which utilizes the frequency correction data and the resonator to receive and RF signal.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 6, 2015
    Assignee: Cambridge Silicon Radio Limited
    Inventors: Daniel Babitch, Steven A. Gronemeyer
  • Publication number: 20150124856
    Abstract: A method for soft frame synchronization in a navigational receiver is provided. A distance between bits of a sync pattern received by the navigational receiver and a known sync pattern is computed. A probability of detection value for the received sync pattern based on the distance is assigned. A confidence level for the received sync pattern using the probability of detection value is computed. The confidence level is compared with a confidence threshold. If the confidence level is greater than or equal to the confidence threshold, the confidence level of the received sync pattern is updated to generate a credibility of the sync pattern. The credibility of the received sync pattern is compared with a predetermined credibility value and, if the credibility of the received sync pattern is greater than or equal to the predetermined credibility value, synchronization of the navigational receiver is performed using the received sync pattern.
    Type: Application
    Filed: August 12, 2014
    Publication date: May 7, 2015
    Inventors: Mohamed YOUSSEF, Bruce McCullough, Steven Gronemeyer
  • Publication number: 20150097726
    Abstract: Methods, systems, and devices for monitoring a Real Time Clock (RTC) oscillator using Digital Signal Processing (DSP), where a resistance/capacitance (RC) oscillator is configured to output a digital pulse signal and a digital RTC Monitor Integrated Circuit (IC) is configured to monitor the RTC oscillator timing signal using the RC oscillator signal. In one aspect, the RTC Monitor IC includes an RTC input configured to receive the RTC oscillator timing signal; an RC input configured to receive the RC oscillator digital pulse signal; and an RTC reset output configured to output an RTC reset signal when a comparison of the RTC and RC oscillator inputs show the RTC oscillator has missed one or more clock cycles. A single wire input/output for both reset and interrupt signals between circuits is also described.
    Type: Application
    Filed: July 10, 2014
    Publication date: April 9, 2015
    Inventors: Daniel Babitch, Steven A. GRONEMEYER, Nicolas VANTALON
  • Publication number: 20150032371
    Abstract: Methods, systems, and apparatuses for a portable device capable of receiving satellite navigational system signals to retrieve visibility mask information corresponding to the portable device's current location and/or trajectory are described.
    Type: Application
    Filed: November 4, 2013
    Publication date: January 29, 2015
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Mohamed Youssef, Andi Jakupi, Bruce McCullough, Steven Gronemeyer
  • Patent number: 8593345
    Abstract: A signal processing system for processing satellite positioning signals is described. The system comprises at least one processor and a signal processor operating under a number of operational modes. The signal processor includes at least one of a signal processing subsystem, a fast Fourier transform (FFT) subsystem, and a memory subsystem that are each dynamically and independently configurable in response to the operational modes. Further, the system includes a controller that couples to control transfer of data among the signal processing subsystem and the FFT subsystem via the memory subsystem. Configurability of the memory subsystem includes configuring the memory subsystem into regions according to the operational modes where each region is accessible in one of a number of manners according to the operational modes.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: November 26, 2013
    Assignee: CSR Technology Inc.
    Inventors: Paul A. Underbrink, Henry D. Falk, Steven A. Gronemeyer, Chittharanjan Dassannacharya, Charles P. Norman, Nicolas Vantalon, Vojislav Protic
  • Publication number: 20130257647
    Abstract: According to certain aspects, the invention includes using acquisition channel results from a number of satellites to achieve composite weak acquisition. According to certain other aspects, the invention also includes solving for an improved position estimate and, with a sufficiently accurate, either initial or improved position estimate, also solving for GPS system time using a composite of acquired signals from a plurality of satellites. Within commonly experienced initial position and time uncertainties, the geometric range changes are fairly linear, which allows the point of convergence of ranges to solve for GPS position and subsequently for time with reasonable accuracy, which is the equivalent to obtaining frame sync without any data demodulation or preamble matching.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: CSR Technology Inc.
    Inventors: Phanikrishna Sagiraju, Steven Gronemeyer
  • Publication number: 20130176170
    Abstract: The present system relates to a GNSS receiver that includes a processor. The processor is configured to receive a temperature signal from a temperature sensor indicating an operating temperature of an resonator. The processor is also configured to compute a frequency and a frequency correction data of the resonator based on the temperature and a frequency model of the resonator. The processor then transmits the frequency correction data to an RF receiver which utilizes the frequency correction data and the resonator to receive and RF signal.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 11, 2013
    Applicant: Cambridge Silicon Radio Ltd.
    Inventors: Daniel Babitch, Steven A. Gronemeyer
  • Patent number: 8446223
    Abstract: Systems and methods for calibrating real time clock are provided. A representative receiver includes a GPS device comprising a real time clock (RTC) circuitry that generates RTC clock signals and a temperature compensated crystal oscillator (TCXO) that generates TCXO clock signals. A ratio counter circuitry receives both the RTC clock signals and the TCXO clock signals and determines a frequency ratio by comparing the RTC clock signals and the TCXO clock signals. A computing device receives the frequency ratio and estimates a current RTC frequency based on the received frequency ratio. The computing device is configured to calibrate an estimated RTC time being maintained at the RTC circuitry based on an estimated RTC frequency from a prior estimation, the current RTC frequency and an elapsed time of the RTC circuitry.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: May 21, 2013
    Assignee: CSR Technology, Inc.
    Inventor: Steven A Gronemeyer
  • Publication number: 20120313817
    Abstract: A signal processing system for processing satellite positioning signals is described. The system comprises at least one processor and a signal processor operating under a number of operational modes. The signal processor includes at least one of a signal processing subsystem, a fast Fourier transform (FFT) subsystem, and a memory subsystem that are each dynamically and independently configurable in response to the operational modes. Further, the system includes a controller that couples to control transfer of data among the signal processing subsystem and the FFT subsystem via the memory subsystem. Configurability of the memory subsystem includes configuring the memory subsystem into regions according to the operational modes where each region is accessible in one of a number of manners according to the operational modes.
    Type: Application
    Filed: February 20, 2012
    Publication date: December 13, 2012
    Applicant: CSR Technology Inc.
    Inventors: Paul A. Underbrink, Henry D. Falk, Steven A. Gronemeyer, Chittharanjan A. Dasannacharya, Charles P. Norman, Nicolas Vantalon, Vojislav Protic
  • Patent number: 8321636
    Abstract: Memory reallocation and sharing among components of an electronic system is provided. The electronic system includes a first memory area coupled for access by a first processor via a first bus, and a second memory area coupled for access by a second processor via a second bus. An example system includes a central processor as the first processor and a digital signal processor as the second processor. The electronic system further includes memory configurations that support shared access of the second memory area by the first processor. Using shared access, the first processor can directly access the second memory via the first bus or indirectly access the second memory via the second bus and the second processor. The memory sharing also includes partitioning the shared memory to simultaneously provide the first processor with direct and indirect access to the shared memory.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: November 27, 2012
    Assignee: CSR Technology Inc.
    Inventors: Nicolas P. Vantalon, Steven A. Gronemeyer, Vojislav Protic
  • Publication number: 20120184236
    Abstract: GPS navigation devices or GPS receivers can consume less power by using a temperature recorder circuit and/or a power manager in maintaining the accuracies of the GPS receiver time and reference frequency to improve battery life. A representative receiver includes a time reference device and the temperature recorder circuit that operate while the receiver hibernates. The time reference device generates clock signals and the temperature recorder circuit receives and operates using the clock signals from the time reference device. The temperature recorder senses the temperature of the time reference device. The temperature recorder circuit is designed to send a wake-up signal to at least one electrical component of the receiver to wake up the electrical component of the receiver. The electrical component of the receiver includes at least one of the following: a GPS signal processing system and a frequency reference device.
    Type: Application
    Filed: March 23, 2012
    Publication date: July 19, 2012
    Applicant: CSR TECHNOLOGY INC.
    Inventors: Daniel Babitch, Steven A. Gronemeyer, Peter Naji
  • Patent number: 8188917
    Abstract: A wireless device including a transceiver that utilizes a power supply is described. The wireless device includes a Global Positioning System (“GPS”) section having a plurality of GPS subsystems and a power controller in signal communication with the power supply and GPS section, wherein the power controller is configured to selectively power each GPS subsystem from the plurality of GPS subsystems.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: May 29, 2012
    Assignee: CSR Technology Holdings Inc.
    Inventors: Steven A. Gronemeyer, Sanjai Kohli, Mark A. Sturza, Donald K. Leimer