Patents by Inventor Steven H Kim

Steven H Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103645
    Abstract: A computer input system includes a mouse including a housing having an interior surface defining an internal volume and a sensor assembly disposed in the internal volume. A processor is electrically coupled to the sensor assembly and a memory component having electronic instructions stored thereon that, when executed by the processor, causes the processor to determine an orientation of the mouse relative to a hand based on a touch input from the hand detected by the sensor assembly. The mouse can also have a circular array of touch sensors or lights that detect hand position and provide orientation information to the user.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 28, 2024
    Inventors: Bart K. Andre, Brian T. Gleeson, Kristi E. Bauerly, William D. Lindmeier, Matthew J. Sundstrom, Geng Luo, Seung Wook Kim, Evangelos Christodoulou, Megan M. Sapp, Kainoa Kwon-Perez, David H. Bloom, Steven J. Taylor, John B. Morrell, Maio He, Hamza Kashif
  • Publication number: 20240103643
    Abstract: A computer system can include an input device having a housing defining an internal volume. The housing can include a grip portion and a base portion defining an aperture. The computer system can also include a tilt sensor disposed in the internal volume, a position sensor disposed at the aperture, and a processor. The processor can be electrically coupled to the position sensor, the tilt sensor, and a memory component storing electronic instructions that, when executed by the processor, cause the processor to receive a first input from the tilt sensor, receive a second input from the position sensor, determine, based on the first and second inputs, if the base is in contact with a support surface and an angle of the base relative to the support surface. The processor can also output a signal based on the angle if the base is in contact with the support surface.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 28, 2024
    Inventors: Megan M. Sapp, Brian T. Gleeson, Steven J. Taylor, David H. Bloom, Maio He, Seung Wook Kim, Evangelos Christodoulou, Kristi E. Bauerly, Geng Luo, Bart K. Andre
  • Publication number: 20240103656
    Abstract: An input device, such as a mouse, can include a housing defining an exterior grip portion and an internal volume, a sensor assembly disposed in the internal volume, and an emitter electrically coupled to the sensor assembly. In response to the sensor assembly detecting a first touch input on the housing, the emitter sends a first signal including information regarding an angular position of the grip portion. In response to the sensor assembly detecting a second touch input on the housing, the emitter sends a second signal including information regarding a direction of a force exerted on the housing from the second touch input.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 28, 2024
    Inventors: Bart K. Andre, Brian T. Gleeson, Kristi E. Bauerly, William D. Lindmeier, Matthew J. Sundstrom, Geng Luo, Seung Wook Kim, Evangelos Christodoulou, Megan M. Sapp, Kainoa Kwon-Perez, David H. Bloom, Steven J. Taylor
  • Patent number: 9735002
    Abstract: A method and apparatus for removing volatile residues from a substrate are provided. In one embodiment, a method for volatile residues from a substrate includes providing a processing system having a load lock chamber and at least one processing chamber coupled to a transfer chamber, treating a substrate in the processing chamber with a chemistry comprising halogen, and removing volatile residues from the treated substrate in the load lock chamber.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: August 15, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Mark Naoshi Kawaguchi, Kin Pong Lo, Brett Christian Hoogensen, Sandy M. Wen, Steven H. Kim
  • Patent number: 8491967
    Abstract: Embodiments of the invention provide a method for treating the inner surfaces of a processing chamber and depositing a material on a during a vapor deposition process, such as atomic layer deposition (ALD) or by chemical vapor deposition (CVD). In one embodiment, the inner surfaces of the processing chamber and the substrate may be exposed to a reagent, such as a hydrogenated ligand compound during a pretreatment process. The hydrogenated ligand compound may be the same ligand as a free ligand formed from the metal-organic precursor used during the subsequent deposition process. The free ligand is usually formed by hydrogenation or thermolysis during the deposition process. In one example, the processing chamber and substrate are exposed to an alkylamine compound (e.g., dimethylamine) during the pretreatment process prior to conducting the vapor deposition process which utilizes a metal-organic chemical precursor having alkylamino ligands, such as pentakis(dimethylamino) tantalum (PDMAT).
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: July 23, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Paul F. Ma, Joseph F. Aubuchon, Mei Chang, Steven H. Kim, Dien-Yeh Wu, Norman M. Nakashima, Mark Johnson, Roja Palakodeti
  • Patent number: 7846845
    Abstract: A method and system for removing volatile residues from a substrate are provided. In one embodiment, the volatile residues removal process is performed en-routed in the system while performing a halogen treatment process on the substrate. The volatile residues removal process is performed in the system other than the halogen treatment processing chamber and a FOUP. In one embodiment, a method for volatile residues from a substrate includes providing a processing system having a vacuum tight platform, processing a substrate in a processing chamber of the platform with a chemistry comprising halogen, and treating the processed substrate in the platform to release volatile residues from the treated substrate.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: December 7, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth J. Bahng, Matthew Fenton Davis, Thorsten Lill, Steven H. Kim
  • Patent number: 7811411
    Abstract: An RF coil assembly provides a source to generate a plasma inductively in a process chamber. The RF coil assembly includes an RF coil disposed about a perimeter of the processing chamber and a frame disposed about a perimeter of the processing chamber. The frame is adapted to support the RF coil in position. An interface material is disposed between and in thermal contact with the frame and a sidewall of the processing chamber. The interface material has a thermal conductivity of 4.0 W/mK or greater.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: October 12, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Siqing Lu, Qiwei Liang, Irene Chou, Steven H. Kim, Young S. Lee, Ellie Y. Yieh, Muhammad M. Rasheed
  • Patent number: 7780789
    Abstract: Embodiments of the invention relate to apparatuses and methods for depositing materials on substrates during atomic layer deposition processes. In one embodiment, a chamber for processing substrates is provided which includes a chamber lid assembly containing an expanding channel extending along a central axis at a central portion of the chamber lid assembly and a tapered bottom surface extending from the expanding channel to a peripheral portion of the chamber lid assembly. The tapered bottom surface may be shaped and sized to substantially cover the substrate receiving surface. The chamber lid assembly further contains a conduit coupled to a gas passageway, another conduit coupled to another gas passageway, and both gas passageways circumvent the expanding channel. Each of the passageways has a plurality of inlets extending into the expanding channel and the inlets are positioned to provide a circular gas flow through the expanding channel.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: August 24, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Dien-Yeh Wu, Puneet Bajaj, Xiaoxiong Yuan, Steven H. Kim, Schubert S. Chu, Paul F. Ma, Joseph F. Aubuchon
  • Publication number: 20100062614
    Abstract: Embodiments of the invention provide a method for treating the inner surfaces of a processing chamber and depositing a material on a during a vapor deposition process, such as atomic layer deposition (ALD) or by chemical vapor deposition (CVD). In one embodiment, the inner surfaces of the processing chamber and the substrate may be exposed to a reagent, such as a hydrogenated ligand compound during a pretreatment process. The hydrogenated ligand compound may be the same ligand as a free ligand formed from the metal-organic precursor used during the subsequent deposition process. The free ligand is usually formed by hydrogenation or thermolysis during the deposition process. In one example, the processing chamber and substrate are exposed to an alkylamine compound (e.g., dimethylamine) during the pretreatment process prior to conducting the vapor deposition process which utilizes a metal-organic chemical precursor having alkylamino ligands, such as pentakis(dimethylamino) tantalum (PDMAT).
    Type: Application
    Filed: September 8, 2008
    Publication date: March 11, 2010
    Inventors: Paul F. Ma, Joseph F. Aubuchon, Mei Chang, Steven H. Kim, Dien-Yeh Wu, Norman M. Nakashima, Mark Johnson, Roja Palakodeti
  • Patent number: 7651587
    Abstract: A substrate processing system has a housing that defines a process chamber, a gas-delivery system, a high-density plasma generating system, a substrate holder, and a controller. The housing includes a sidewall and a dome positioned above the sidewall. The dome has physically separated and noncontiguous pieces. The gas-delivery system introduces e a gas into the process chamber through side nozzles positioned between two of the physically separated and noncontiguous pieces of the dome. The high-density plasma generating system is operatively coupled with the process chamber. The substrate holder is disposed within the process chamber and supports a substrate during substrate processing. The controller controls the gas-delivery system and the high-density plasma generating system.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: January 26, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Siqing Lu, Qiwei Liang, Canfeng Lai, Robert T. Chen, Jason T. Bloking, Irene Chou, Steven H. Kim, Young S. Lee, Ellie Y. Yieh
  • Publication number: 20090014324
    Abstract: A method and apparatus for removing volatile residues from a substrate are provided. In one embodiment, a method for volatile residues from a substrate includes providing a processing system having a load lock chamber and at least one processing chamber coupled to a transfer chamber, treating a substrate in the processing chamber with a chemistry comprising halogen, and removing volatile residues from the treated substrate in the load lock chamber.
    Type: Application
    Filed: August 29, 2008
    Publication date: January 15, 2009
    Inventors: Mark Naoshi Kawaguchi, Kin Pong Lo, Brett Christian Hoogensen, Sandy M. Wen, Steven H. Kim
  • Publication number: 20080102646
    Abstract: A method and apparatus for removing volatile residues from a substrate are provided. In one embodiment, a method for volatile residues from a substrate includes providing a processing system having a load lock chamber and at least one processing chamber coupled to a transfer chamber, treating a substrate in the processing chamber with a chemistry comprising halogen, and removing volatile residues from the treated substrate in the load lock chamber.
    Type: Application
    Filed: October 26, 2006
    Publication date: May 1, 2008
    Inventors: Mark Naoshi Kawaguchi, Kin Pong Lo, Brett Christian Hoogensen, Sandy M. Wen, Steven H. Kim
  • Publication number: 20080099040
    Abstract: A method and system for removing volatile residues from a substrate are provided. In one embodiment, the volatile residues removal process is performed en-routed in the system while performing a halogen treatment process on the substrate. The volatile residues removal process is performed in the system other than the halogen treatment processing chamber and a FOUP. In one embodiment, a method for volatile residues from a substrate includes providing a processing system having a vacuum tight platform, processing a substrate in a processing chamber of the platform with a chemistry comprising halogen, and treating the processed substrate in the platform to release volatile residues from the treated substrate.
    Type: Application
    Filed: February 16, 2007
    Publication date: May 1, 2008
    Inventors: Kenneth J. Bahng, Matthew Fenton Davis, Thorsten Lill, Steven H. Kim
  • Patent number: 7183227
    Abstract: High flows of low-mass fluent gases are used in an HDP-CVD process for gapfill deposition of a silicon oxide film. An enhanced turbomolecular pump that provides a large compression ratio for such low-mass fluent gases permits pressures to be maintained at relatively low levels in a substrate processing chamber, thereby improving the gapfill characteristics.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: February 27, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Muhammad M. Rasheed, Steven H Kim