Patents by Inventor Steven H. Thomas

Steven H. Thomas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140158645
    Abstract: The present invention is a storage and retrieval device for binder clip mechanisms and comprises a cluster of extended plastic posts protruding outward from a surface in such a manner to allow a binder clip mechanism to easily grip one or more of the extended plastic posts quickly and easily and without the necessity of the user selecting any particular post.
    Type: Application
    Filed: August 2, 2013
    Publication date: June 12, 2014
    Applicant: Thomas Concepts, LLC
    Inventor: Steven H. Thomas
  • Patent number: 8044842
    Abstract: A method of compensating for component errors within a radar altimeter is described. The method includes periodically switching transmit pulses from a transmit antenna to a programmable delay device, calculating an altitude based on a transmit pulse received from the programmable delay device, comparing the calculated altitude to an expected altitude, the expected altitude based on a pre-set delay through the programmable delay device, and compensating an altitude measured by the radar altimeter, based on transmit pulses output through the transmit antenna, by an error correction amount based on a difference between the calculated altitude and expected altitudes.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: October 25, 2011
    Assignee: Honeywell International Inc.
    Inventors: Steven H. Thomas, Timothy J. Reilly, Glen B. Backes
  • Patent number: 7652615
    Abstract: A radar sensor is described that includes a radar transmitter, a radar receiver configured to receive reflected returns of signals output by the radar transmitter, and a signal processing unit configured to process signals received by the radar receiver. The signal processing unit includes a comparator, a first filter comprising an output coupled to a reference input of the comparator, and a second filter comprising an output coupled to a signal input of the comparator. The first and second filters are configured to receive a common input related to the reflected returns. The first filter is configured to have a time constant such that a rise time of the first filter output is faster than a rise time of the second filter output.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: January 26, 2010
    Inventors: Steven H. Thomas, Timothy J. Reilly, Benjamin J. Winstead
  • Publication number: 20090262008
    Abstract: A method of compensating for component errors within a radar altimeter is described. The method includes periodically switching transmit pulses from a transmit antenna to a programmable delay device, calculating an altitude based on a transmit pulse received from the programmable delay device, comparing the calculated altitude to an expected altitude, the expected altitude based on a pre-set delay through the programmable delay device, and compensating an altitude measured by the radar altimeter, based on transmit pulses output through the transmit antenna, by an error correction amount based on a difference between the calculated altitude and expected altitudes.
    Type: Application
    Filed: June 23, 2009
    Publication date: October 22, 2009
    Applicant: Honeywell International Inc.
    Inventors: Steven H. Thomas, Timothy J. Reilly, Glen B. Backes
  • Patent number: 7576683
    Abstract: In one aspect, a method of radar altimeter operation including a time dependent gain control is described. The method comprises triggering a Sensitivity Time Control (STC) gain control signal at a pulse repetition frequency (PRF) of a transmit pulse to attenuate interference from at least one of an antenna leakage signal and a signal reflected from equipment. The method also includes shaping the STC gain control signal from no attenuation at a first time, before a transmitter sends the transmit pulse, to a stable maximum attenuation at the time the transmitter sends the transmit pulse, to no attenuation at a second time, after the transmitter sends the transmit pulse. The method also includes matching a bandwidth of an intermediate frequency (IF) amplifier to the pulse width of a transmitted pulse.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: August 18, 2009
    Assignee: Honeywell International Inc.
    Inventors: Steven H. Thomas, Glen B. Backes, Timothy J. Reilly
  • Publication number: 20090174594
    Abstract: In one aspect, a method of radar altimeter operation, the altimeter including a high frequency counter coupled to a processor is described. The method comprises providing a continuous wave to the high frequency counter upon receipt of a transmit pulse, counting the cycles of the continuous wave, discontinuing counting of the continuous wave cycles upon receipt of a return pulse, outputting a count from the high frequency counter to the processor, and operating the processor to convert the count to an altitude.
    Type: Application
    Filed: March 11, 2009
    Publication date: July 9, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Steven H. Thomas, Timothy J. Reilly, Glen B. Backes
  • Patent number: 7548188
    Abstract: A method of delaying propagation of a radio frequency (RF) signal through a circuit is described. The method comprises receiving data that represents a delay time interval, providing an RF signal when a start pulse triggers a memory device, initiating a count through the delay time interval based on receipt of a start pulse, and outputting the RF signal after the delay time interval has expired.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: June 16, 2009
    Assignee: Honeywell International Inc.
    Inventors: Steven H. Thomas, Glen B. Backes, Timothy J. Reilly
  • Publication number: 20090096663
    Abstract: In one aspect, a method of radar altimeter operation including a time dependent gain control is described. The method comprises triggering a Sensitivity Time Control (STC) gain control signal at a pulse repetition frequency (PRF) of a transmit pulse to attenuate interference from at least one of an antenna leakage signal and a signal reflected from equipment. The method also includes shaping the STC gain control signal from no attenuation at a first time, before a transmitter sends the transmit pulse, to a stable maximum attenuation at the time the transmitter sends the transmit pulse, to no attenuation at a second time, after the transmitter sends the transmit pulse. The method also includes matching a bandwidth of an intermediate frequency (IF) amplifier to the pulse width of a transmitted pulse.
    Type: Application
    Filed: August 7, 2006
    Publication date: April 16, 2009
    Inventors: Steven H. Thomas, Glen B. Backes, Timothy J. Reilly
  • Publication number: 20090058716
    Abstract: A method of delaying propagation of a radio frequency (RF) signal through a circuit is described. The method comprises receiving data that represents a delay time interval, providing an RF signal when a start pulse triggers a memory device, initiating a count through the delay time interval based on receipt of a start pulse, and outputting the RF signal after the delay time interval has expired.
    Type: Application
    Filed: August 7, 2006
    Publication date: March 5, 2009
    Inventors: Steven H. Thomas, Glen B. Backes, Timothy J. Reilly
  • Patent number: 7498986
    Abstract: A method for determining the location of an actuating device is described. The method includes receiving transmissions from the actuator utilizing a plurality of multiple channel receiving devices, determining a direction to the actuator based on the signals received, and retrieving position, orientation, and time information for the plurality of multiple channel receiving devices relating to each transmission received from the actuator. Also included in the method is triangulating the position of the actuator based on the position, orientation, time, and determined direction to the actuator for the plurality of multiple channel receiving devices. Systems that perform the above method are also described.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: March 3, 2009
    Assignee: Honeywell International Inc.
    Inventor: Steven H. Thomas
  • Publication number: 20090045998
    Abstract: A programmable circuit for controlling a detonation altitude of a radar equipped munition is provided. The circuit comprises means for calculating a velocity of the munition while the munition is operating in a pulse mode at an altitude greater than the desired detonation altitude and means, responsive to the means for calculating the velocity of the munition, for determining when the munition is at a reference altitude in order to operate the munition in a continuous wave transmission mode. The circuit further comprises means, responsive to the means for determining, for calculating a time representing when the vehicle will reach the desired detonation altitude based on the calculated velocity and the determined reference altitude, and means, responsive to the means for calculating the time representing when the vehicle will reach the desired detonation altitude, for generating a fusing signal to detonate the munition after the calculated time has passed.
    Type: Application
    Filed: October 24, 2008
    Publication date: February 19, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Steven H. Thomas, Timothy J. Reilly
  • Patent number: 7453395
    Abstract: A method for determining a position of a target is described that includes establishing a reference target position and a measuring location position and measuring a range to the target, an azimuth angle to the target, and an elevation angle to the target. The reference target position, the measuring location position, the measured range to the target, the azimuth angle to the target, and the elevation angle to the target are utilized to calculate a position of the target.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: November 18, 2008
    Assignee: Honeywell International Inc.
    Inventors: Steven H. Thomas, Mahesh K. Jeerage, Conrad Mueller
  • Patent number: 7453392
    Abstract: A radar processor for controlling detonation of a munition and operable to receive a detonation altitude from an external source is provided. The radar processor is configured to set a first range gate and a reference range gate based on the received detonation altitude, and cause a radar transmitter to operate in a continuous wave mode, for a predetermined period, upon receipt of radar return signals through the first range gate. The radar processor calculates a velocity of the munition from continuous wave return signals, and calculates a time delay for outputting a detonation signal based on the received detonation altitude, the calculated velocity, and a reference altitude of the munition, the altitude of the munition calculated based upon receipt of radar return signals through the reference range gate. The radar transmitter operates in a pulse mode while the munition is outside the reference range gate.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: November 18, 2008
    Assignee: Honeywell International Inc.
    Inventors: Steven H. Thomas, Timothy J. Reilly
  • Patent number: 7417586
    Abstract: A method to compensate for variances in signal path delays for a plurality of radar return processing channels is described. The method comprises providing a signal in the signal path between an antenna and a corresponding receiver of each radar return processing channel, receiving a reflection of the provided signal from each antenna at the corresponding receiver, measuring phase variances between the reflected signals processed by each receiver, and adjusting compensation algorithms for each radar return processing channel based on the measured phase variances.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: August 26, 2008
    Assignee: Honeywell International Inc.
    Inventors: Steven H. Thomas, Larry D. Almsted
  • Patent number: 7389686
    Abstract: An air data system is described that includes a cone-shaped probe, a plurality of pressure transducers, and a processing device. The cone-shaped probe includes a first pressure port formed in a substantial tip of the probe and extending therethrough, and a plurality of pressure ports formed in a substantially evenly spaced circular pattern about a sloped surface of the probe and extending through the probe. The plurality of pressure transducers are each configured to receive at least one pressure transferred through at least one of the pressure ports and output one or more signals related to the pressures sensed. The processing device is configured to receive signals originating from the transducers. The processing device is further configured to calculate a static pressure, an angle of attack, and an angle of sideslip based on the received signals.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: June 24, 2008
    Assignee: Honeywell International Inc.
    Inventors: Steven H. Thomas, Michael R. Elgersma
  • Publication number: 20080143585
    Abstract: A method to compensate for variances in signal path delays for a plurality of radar return processing channels is described. The method comprises providing a signal in the signal path between an antenna and a corresponding receiver of each radar return processing channel, receiving a reflection of the provided signal from each antenna at the corresponding receiver, measuring phase variances between the reflected signals processed by each receiver, and adjusting compensation algorithms for each radar return processing channel based on the measured phase variances.
    Type: Application
    Filed: February 7, 2006
    Publication date: June 19, 2008
    Inventors: Steven H. Thomas, Larry D. Almsted
  • Publication number: 20080129600
    Abstract: A method for determining the location of an actuating device is described. The method includes receiving transmissions from the actuator utilizing a plurality of multiple channel receiving devices, determining a direction to the actuator based on the signals received, and retrieving position, orientation, and time information for the plurality of multiple channel receiving devices relating to each transmission received from the actuator. Also included in the method is triangulating the position of the actuator based on the position, orientation, time, and determined direction to the actuator for the plurality of multiple channel receiving devices. Systems that perform the above method are also described.
    Type: Application
    Filed: December 5, 2005
    Publication date: June 5, 2008
    Inventor: Steven H. Thomas
  • Publication number: 20080129599
    Abstract: A method for determining the position of a target using digital terrain elevation data survey points and a corresponding target locating system are described. The method includes selecting at least two surveyed reference points from the digital terrain elevation data, determining a location of the target locator with respect to the digital terrain elevation data, and referencing the location of the target to the digital terrain elevation data. The method further includes measuring a position of the target locator, and translating a difference between the determined location and the measured position of the target locator to the referenced location of the target.
    Type: Application
    Filed: December 5, 2005
    Publication date: June 5, 2008
    Inventors: Steven H. Thomas, Larry D. Almsted
  • Publication number: 20080122677
    Abstract: A radar processor for controlling detonation of a munition and operable to receive a detonation altitude from an external source is provided. The radar processor is configured to set a first range gate and a reference range gate based on the received detonation altitude, and cause a radar transmitter to operate in a continuous wave mode, for a predetermined period, upon receipt of radar return signals through the first range gate. The radar processor calculates a velocity of the munition from continuous wave return signals, and calculates a time delay for outputting a detonation signal based on the received detonation altitude, the calculated velocity, and a reference altitude of the munition, the altitude of the munition calculated based upon receipt of radar return signals through the reference range gate. The radar transmitter operates in a pulse mode while the munition is outside the reference range gate.
    Type: Application
    Filed: February 5, 2008
    Publication date: May 29, 2008
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Steven H. Thomas, Timothy J. Reilly
  • Patent number: 7377159
    Abstract: A system for determining angle of attack and angle of sideslip of an air vehicle is described. The system includes a plurality of mass flow sensors, at least a portion of which are mounted to result in a differential in air flow across the respective mass air flow sensors. The system also includes a controller configured to receive signals from the flow sensors and determine at least one of the angle of attack and the angle of sideslip for the air vehicle.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: May 27, 2008
    Assignee: Honeywell International Inc.
    Inventor: Steven H. Thomas