Patents by Inventor Steven Henck

Steven Henck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12169194
    Abstract: Devices for sequencing linear biomolecules (e.g., DNA, RNA, polypeptides, proteins, and the like) using quantum tunneling effects, and methods of making and using such devices, are provided. A nanofabricated device can include a small gap formed by depositing a thin film between two electrodes, and subsequently removing the film using an etching process. The width of the resulting gap can correspond with the size of a linear biomolecule such that when a part of the biomolecule (e.g., a nucleobase or amino acid) is present in the gap, a change in tunneling current, voltage, or impedance can be measured and the part of the biomolecule identified. The gap dimensions can be precisely controlled at the atomic-scale by, for example, atomic layer deposition (ALD) of the sacrificial film. The device can be made using existing integrated circuit fabrication equipment and facilities, and multiple devices can be formed on a single chip.
    Type: Grant
    Filed: August 3, 2023
    Date of Patent: December 17, 2024
    Assignee: Roche Sequencing Solutions, Inc.
    Inventor: Steven Henck
  • Publication number: 20240060956
    Abstract: Devices for sequencing linear biomolecules (e.g., DNA, RNA, polypeptides, proteins, and the like) using quantum tunneling effects, and methods of making and using such devices, are provided. A nanofabricated device can include a small gap formed by depositing a thin film between two electrodes, and subsequently removing the film using an etching process. The width of the resulting gap can correspond with the size of a linear biomolecule such that when a part of the biomolecule (e.g., a nucleobase or amino acid) is present in the gap, a change in tunneling current, voltage, or impedance can be measured and the part of the biomolecule identified. The gap dimensions can be precisely controlled at the atomic-scale by, for example, atomic layer deposition (ALD) of the sacrificial film. The device can be made using existing integrated circuit fabrication equipment and facilities, and multiple devices can be formed on a single chip.
    Type: Application
    Filed: August 3, 2023
    Publication date: February 22, 2024
    Inventor: Steven HENCK
  • Patent number: 11754549
    Abstract: Devices for sequencing linear biomolecules (e.g., DNA, RNA, polypeptides, proteins, and the like) using quantum tunneling effects, and methods of making and using such devices, are provided. A nanofabricated device can include a small gap formed by depositing a thin film between two electrodes, and subsequently removing the film using an etching process. The width of the resulting gap can correspond with the size of a linear biomolecule such that when a part of the biomolecule (e.g., a nucleobase or amino acid) is present in the gap, a change in tunneling current, voltage, or impedance can be measured and the part of the biomolecule identified. The gap dimensions can be precisely controlled at the atomic-scale by, for example, atomic layer deposition (ALD) of the sacrificial film. The device can be made using existing integrated circuit fabrication equipment and facilities, and multiple devices can be formed on a single chip.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: September 12, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventor: Steven Henck
  • Publication number: 20220317110
    Abstract: Devices for sequencing linear biomolecules (e.g., DNA, RNA, polypeptides, proteins, and the like) using quantum tunneling effects, and methods of making and using such devices, are provided. A nanofabricated device can include a small gap formed by depositing a thin film between two electrodes, and subsequently removing the film using an etching process. The width of the resulting gap can correspond with the size of a linear biomolecule such that when a part of the biomolecule (e.g., a nucleobase or amino acid) is present in the gap, a change in tunneling current, voltage, or impedance can be measured and the part of the biomolecule identified. The gap dimensions can be precisely controlled at the atomic-scale by, for example, atomic layer deposition (ALD) of the sacrificial film. The device can be made using existing integrated circuit fabrication equipment and facilities, and multiple devices can be formed on a single chip.
    Type: Application
    Filed: June 13, 2022
    Publication date: October 6, 2022
    Inventor: Steven HENCK
  • Patent number: 11391719
    Abstract: Devices for sequencing linear biomolecules (e.g., DNA, RNA, polypeptides, proteins, and the like) using quantum tunneling effects, and methods of making and using such devices, are provided. A nanofabricated device can include a small gap formed by depositing a thin film between two electrodes, and subsequently removing the film using an etching process. The width of the resulting gap can correspond with the size of a linear biomolecule such that when a part of the biomolecule (e.g., a nucleobase or amino acid) is present in the gap, a change in tunneling current, voltage, or impedance can be measured and the part of the biomolecule identified. The gap dimensions can be precisely controlled at the atomic-scale by, for example, atomic layer deposition (ALD) of the sacrificial film. The device can be made using existing integrated circuit fabrication equipment and facilities, and multiple devices can be formed on a single chip.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: July 19, 2022
    Assignee: Roche Sequencing Solutions, Inc.
    Inventor: Steven Henck
  • Publication number: 20180299400
    Abstract: A method of sequencing a DNA sample is disclosed. A nanopore-based sequencing device is provided. The nanopore-based sequencing device includes a conductive layer. The device further includes a working electrode disposed above the conductive layer. The device further includes a side wall disposed above the working electrode, wherein the side wall and the working electrode form a well in which an electrolyte may be contained, and wherein at least an upper portion of the side wall comprises a hydrophobic portion formed by a fluoropolymer material. The DNA sample is sequenced using the nanopore-based sequencing device.
    Type: Application
    Filed: October 21, 2016
    Publication date: October 18, 2018
    Inventors: John Foster, Steven Henck
  • Publication number: 20180120287
    Abstract: Devices for sequencing linear biomolecules (e.g., DNA, RNA, polypeptides, proteins, and the like) using quantum tunneling effects, and methods of making and using such devices, are provided. A nanofabricated device can include a small gap formed by depositing a thin film between two electrodes, and subsequently removing the film using an etching process. The width of the resulting gap can correspond with the size of a linear biomolecule such that when a part of the biomolecule (e.g., a nucleobase or amino acid) is present in the gap, a change in tunneling current, voltage, or impedance can be measured and the part of the biomolecule identified. The gap dimensions can be precisely controlled at the atomic-scale by, for example, atomic layer deposition (ALD) of the sacrificial film. The device can be made using existing integrated circuit fabrication equipment and facilities, and multiple devices can be formed on a single chip.
    Type: Application
    Filed: December 21, 2017
    Publication date: May 3, 2018
    Inventor: Steven Henck
  • Publication number: 20100261241
    Abstract: Embodiments of the present invention include methods for the production of four carbon alcohols, specifically n-butanol, by a consolidated bioprocessing approach for the conversion of cellulosic material to the desired end product. According to some embodiments, recombinant microbial host cells are provided, preferably S. cerevisiae, that are capable of converting cellulosic material to butanol and include butanol biosynthetic pathway genes and cellulase genes.
    Type: Application
    Filed: October 27, 2008
    Publication date: October 14, 2010
    Inventors: Nikolai Khramtsov, Alexander Amerik, Bruce E. Taillon, Steven Henck
  • Publication number: 20030092171
    Abstract: The present invention discloses methodologies for the treatment of the surface(s) of DNA processing devices so as to greatly reduce contamination with metal ions and semi-metal ions. These aforementioned surface treatments include an ammonium hydroxide and hydrogen peroxide wash, followed by a wash with EDTA which is followed by a wash with ammonium hydroxide and hydrogen peroxide. The present invention also discloses the fabrication of DNA processing devices utilizing surface(s) treated by the methods described. Such DNA processing devices include, for example, FORA, miniaturized electrophoresis and other DNA separation devices, such as miniaturized PCR reactors, and the like. Additionally, the methodologies and devices of the present invention are also applicable to the processing of nucleic acids, in general.
    Type: Application
    Filed: October 23, 2002
    Publication date: May 15, 2003
    Inventor: Steven Henck
  • Patent number: 6193866
    Abstract: This invention relates to a method and device for separating charged particles according to their diffusivities in a separation medium by means of a spatially and temporally varying electric potential. The method is particularly suited to sizing and separating DNA fragments, to generating DNA fragment length polymorphism patterns, and to sequencing DNA through the separation of DNA sequencing reaction products. The method takes advantage of the transport of charged particles subject to an electric potential that is cycled between an off-state (in which the potential is flat) and one or more on-states, in which the potential is preferably spatially periodic with a plurality of eccentrically shaped stationary potential wells. The potential wells are at constant spatial positions in the on-state. Differences in liquid-phase diffusivities lead to charged particle separation. A preferred embodiment of the device is microfabricated. A separation medium fills physically defined separation lanes in the device.
    Type: Grant
    Filed: December 16, 1998
    Date of Patent: February 27, 2001
    Assignee: Curagen Corporation
    Inventors: Joel S. Bader, Jonathan M. Rothberg, Michael W. Deem, Gregory T. Mulhern, Gregory T. Went, John Simpson, Steven Henck