Patents by Inventor Steven Holdcroft

Steven Holdcroft has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12084554
    Abstract: Described herein are anionic phenylene oligomers and polymers, and devices including these materials. The oligomers and polymers can be prepared in a convenient and well-controlled manner, and can be used in cation exchange membranes. Also described is the controlled synthesis of anionic phenylene monomers and their use in synthesizing anionic oligomers and polymers, with precise control of the position and number of anionic groups.
    Type: Grant
    Filed: September 11, 2023
    Date of Patent: September 10, 2024
    Assignee: Simon Fraser University
    Inventors: Steven Holdcroft, Thomas J. G. Skalski, Michael Adamski, Benjamin Britton, Timothy J. Peckham
  • Patent number: 11970590
    Abstract: Described herein are anionic phenylene oligomers and polymers, and devices including these materials. The oligomers and polymers can be prepared in a convenient and well-controlled manner, and can be used in cation exchange membranes. Also described is the controlled synthesis of anionic phenylene monomers and their use in synthesizing anionic oligomers and polymers, with precise control of the position and number of anionic groups.
    Type: Grant
    Filed: January 17, 2023
    Date of Patent: April 30, 2024
    Inventors: Steven Holdcroft, Thomas J. G. Skalski, Michael Adamski, Benjamin Britton, Timothy J. Peckham
  • Publication number: 20240117132
    Abstract: Described herein are anionic phenylene oligomers and polymers, and devices including these materials. The oligomers and polymers can be prepared in a convenient and well-controlled manner, and can be used in cation exchange membranes. Also described is the controlled synthesis of anionic phenylene monomers and their use in synthesizing anionic oligomers and polymers, with precise control of the position and number of anionic groups.
    Type: Application
    Filed: September 11, 2023
    Publication date: April 11, 2024
    Applicant: Simon Fraser University
    Inventors: Steven Holdcroft, Thomas J.G. Skalski, Michael Adamski, Benjamin Britton, Timothy J. Peckham
  • Publication number: 20230348659
    Abstract: Described herein are branched and hyperbranched anionic phenylene polymers, produced with controlled incorporation of anionic substituents. Applications of such branched ionomeric polymers are also described herein. The branched ionomeric polymers are prepared by a convenient and well-controlled method, permitting tailored properties of catalyst ink formulations, ionomeric polymer membranes, and other applications. Such branched ionomeric polymers have applications in water purification, fuel cells, and battery products.
    Type: Application
    Filed: April 5, 2023
    Publication date: November 2, 2023
    Applicant: Simon Fraser University
    Inventors: Michael Adamski, Emmanuel Balogun, Simon Cassegrain, Peter Mardle, Steven Holdcroft
  • Patent number: 11802187
    Abstract: Described herein are anionic phenylene oligomers and polymers, and devices including these materials. The oligomers and polymers can be prepared in a convenient and well-controlled manner, and can be used in cation exchange 5 membranes. Also described is the controlled synthesis of anionic phenylene monomers and their use in synthesizing anionic oligomers and polymers, with precise control of the position and number of anionic groups.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: October 31, 2023
    Assignee: Simon Fraser University
    Inventors: Steven Holdcroft, Thomas J. G. Skalski, Michael Adamski, Benjamin Britton, Timothy J. Peckham
  • Publication number: 20230159716
    Abstract: Described herein are anionic phenylene oligomers and polymers, and devices including these materials. The oligomers and polymers can be prepared in a convenient and well-controlled manner, and can be used in cation exchange membranes. Also described is the controlled synthesis of anionic phenylene monomers and their use in synthesizing anionic oligomers and polymers, with precise control of the position and number of anionic groups.
    Type: Application
    Filed: January 17, 2023
    Publication date: May 25, 2023
    Applicant: Simon Fraser University
    Inventors: Steven Holdcroft, Thomas J.G. Skalski, Michael Adamski, Benjamin Britton, Timothy J. Peckham
  • Patent number: 11299464
    Abstract: Provided herein are imidazolium polymers having steric hindrance at the 4-position of the imidazole moieties in the polymeric chain. The sterically-protected, N-methylated imidazolium polymers exhibit hydroxide stability in concentrated caustic solutions at elevated temperatures, such as at 100° C. and higher.
    Type: Grant
    Filed: July 29, 2017
    Date of Patent: April 12, 2022
    Assignee: Simon Fraser University
    Inventors: Steven Holdcroft, Jiantao Fan, Andrew Wright, Benjamin Britton, Thomas Weissbach, Timothy James Peckham, Jonathan William Ward
  • Patent number: 11230626
    Abstract: Described herein are crosslinked alkylated poly(benzimidazole) and poly(imidazole) polymer materials and devices (e.g., fuel cells, water electrolyzers) including these polymer materials. The polymer materials can be prepared in a convenient manner, allowing for applications such as anion exchange membranes (AEMs). The membranes provide high anion conductivities over a wider range of operating conditions when compared to the analogous membranes that are not cross-linked. The crosslinked polymer materials have improved alkaline stability, when compared to the analogous non-crosslinked polymer materials.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: January 25, 2022
    Assignee: Simon Fraser University
    Inventors: Steven Holdcroft, Thomas Weissbach, Timothy James Peckham, Andrew Wright, Benjamin Britton
  • Publication number: 20200362129
    Abstract: Described herein are anionic phenylene oligomers and polymers, and devices including these materials. The oligomers and polymers can be prepared in a convenient and well-controlled manner, and can be used in cation exchange 5 membranes. Also described is the controlled synthesis of anionic phenylene monomers and their use in synthesizing anionic oligomers and polymers, with precise control of the position and number of anionic groups.
    Type: Application
    Filed: April 10, 2018
    Publication date: November 19, 2020
    Applicant: Simon Fraser University
    Inventors: Steven Holdcroft, Thomas J.G. Skalski, Michael Adamski, Benjamin Britton, Timothy J. Peckham
  • Patent number: 10800874
    Abstract: The present disclosure provides alkaline-stable m-terphenyl benzimidazolium hydroxide compounds, in which the C2-position is attached to a phenyl group having various substituents at the ortho positions. Polymers incorporating m-terphenylene repeating groups derived from these alkaline-stable benzimidazolium hydroxide compounds are also presented, along with their inclusion in ionic membranes and in electrochemical devices.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: October 13, 2020
    Assignee: Simon Fraser University
    Inventors: Steven Holdcroft, Andrew Wright
  • Publication number: 20190382353
    Abstract: Provided herein are imidazolium polymers having steric hindrance at the 4-position of the imidazole moieties in the polymeric chain. The sterically-protected, N-methylated imidazolium polymers exhibit hydroxide stability in concentrated caustic solutions at elevated temperatures, such as at 100° C. and higher.
    Type: Application
    Filed: July 29, 2017
    Publication date: December 19, 2019
    Applicant: Simon Fraser University
    Inventors: Steven Holdcroft, Jiantao Fan, Andrew Wright, Benjamin Britton, Thomas Weissbach, Timothy James Peckham, Jonathan William Ward
  • Publication number: 20190202991
    Abstract: Described herein are stable hydroxide ion-exchange polymers and devices including the stable hydroxide ion-exchange N polymers. The polymers include ionenes, which are polymers that contain ionic amines in the backbone. The polymers are alcohol-soluble and water-insoluble. The polymers have a water uptake and an ionic conductivity that are correlated to a degree of N-substitution. Methods of forming the polymers and membranes including the polymers are also provided. The polymers are suitable, for example, for use as ionomers in catalyst layers for fuel cells and electrolyzers.
    Type: Application
    Filed: May 1, 2017
    Publication date: July 4, 2019
    Applicant: Simon Fraser University
    Inventors: Steven Holdcroft, Benjamin Britton, Andrew Wright
  • Publication number: 20190169372
    Abstract: Described herein are crosslinked alkylated poly(benzimidazole) and poly(imidazole) polymer materials and devices (e.g., fuel cells, water electrolyzers) including these polymer materials. The polymer materials can be prepared in a convenient manner, allowing for applications such as anion exchange membranes (AEMs). The membranes provide high anion conductivities over a wider range of operating conditions when compared to the analogous membranes that are not cross-linked. The crosslinked polymer materials have improved alkaline stability, when compared to the analogous non-crosslinked polymer materials.
    Type: Application
    Filed: August 1, 2017
    Publication date: June 6, 2019
    Applicant: Simon Fraser University
    Inventors: Steven Holdcroft, Thomas Weissbach, Timothy James Peckham, Andrew Wright, Benjamin Britton
  • Publication number: 20190016851
    Abstract: The present disclosure provides alkaline-stable m-terphenyl benzimidazolium hydroxide compounds, in which the C2-position is attached to a phenyl group having various substituents at the ortho positions. Polymers incorporating m-terphenylene repeating groups derived from these alkaline-stable benzimidazolium hydroxide compounds are also presented, along with their inclusion in ionic membranes and in electrochemical devices.
    Type: Application
    Filed: January 6, 2017
    Publication date: January 17, 2019
    Applicant: Simon Fraser University
    Inventors: Steven Holdcroft, Andrew Wright
  • Patent number: 10005886
    Abstract: Described herein are stable hydroxide ion-exchange polymers. The polymers include ionenes, which are polymers that contain ionic amines in the backbone. The polymers are alcohol-soluble and water-insoluble. The polymers have a water uptake and an ionic conductivity that are correlated to a degree of N-substitution. Methods of forming the polymers and membranes including the polymers are also provided. The polymers are suitable, for example, for use as ionomers in catalyst layers for fuel cells and electrolyzers.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: June 26, 2018
    Assignee: Simon Fraser University
    Inventors: Steven Holdcroft, Andrew Wright
  • Patent number: 9748594
    Abstract: A polymer of fluorine-containing sulfonated poly(arylene ether)s and a manufacturing method thereof are provided. The polymer is formed by processing a nucleophilic polycondensation between a fluorine-containing monomer having an electron-withdrawing group and a multi-phenyl monomer. A main structure of the polymer of fluorine-containing sulfonated poly(arylene ether)s has a first portion with fluoro or trifluoromethyl substituted phenyl groups, and a second portion with sulfonated phenyl groups.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: August 29, 2017
    Assignee: National Sun Yat-sen University
    Inventors: Wen-yao Huang, Hsu-feng Lee, Benjamin Britton, Chun-che Lee, Steven Holdcroft, Jun-jie Pang, Yi-yun Hsu, Yu-chao Tseng
  • Publication number: 20170214075
    Abstract: A polymer of fluorine-containing sulfonated poly(arylene ether)s and a manufacturing method thereof are provided. The polymer is formed by processing a nucleophilic polycondensation between a fluorine-containing monomer having an eletron-withdrawing group and a multi-phenyl monomer. A main structure of the polymer of fluorine-containing sulfonated poly(arylene ether)s has a first portion with fluoro or trifluoromethyl substituted phenyl groups, and a second portion with sulfonated phenyl groups.
    Type: Application
    Filed: April 5, 2017
    Publication date: July 27, 2017
    Inventors: Wen-yao HUANG, Hsu-feng LEE, Benjamin BRITTON, Chun-che LEE, Steven HOLDCROFT, Jun-jie PANG, Yi-yun HSU, Yu-chao TSENG
  • Patent number: 9644069
    Abstract: A polymer of fluorine-containing sulfonated poly(arylene ether)s and a manufacturing method thereof are provided. The polymer is formed by processing a nucleophilic polycondensation between a fluorine-containing monomer having an electron-withdrawing group and a multi-phenyl monomer. A main structure of the polymer of fluorine-containing sulfonated poly(arylene ether)s has a first portion with fluoro or trifluoromethyl substituted phenyl groups, and a second portion with sulfonated phenyl groups.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: May 9, 2017
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Wen-yao Huang, Hsu-feng Lee, Benjamin Britton, Chun-che Lee, Steven Holdcroft, Jun-jie Pang, Yi-yun Hsu, Yu-chao Tseng
  • Publication number: 20170037188
    Abstract: Described herein are stable hydroxide ion-exchange polymers. The polymers include ionenes, which are polymers that contain ionic amines in the backbone. The polymers are alcohol-soluble and water-insoluble. The polymers have a water uptake and an ionic conductivity that are correlated to a degree of N-substitution. Methods of forming the polymers and membranes including the polymers are also provided. The polymers are suitable, for example, for use as ionomers in catalyst layers for fuel cells and electrolyzers.
    Type: Application
    Filed: April 15, 2015
    Publication date: February 9, 2017
    Applicant: Simon Fraser University
    Inventors: Steven Holdcroft, Andrew Wright
  • Publication number: 20170009016
    Abstract: A polymer of fluorine-containing sulfonated poly(arylene ether)s and a manufacturing method thereof are provided. The polymer is formed by processing a nucleophilic polycondensation between a fluorine-containing monomer having an electron-withdrawing group and a multi-phenyl monomer. A main structure of the polymer of fluorine-containing sulfonated poly(arylene ether)s has a first portion with fluoro or trifluoromethyl substituted phenyl groups, and a second portion with sulfonated phenyl groups.
    Type: Application
    Filed: July 7, 2015
    Publication date: January 12, 2017
    Inventors: Wen-yao HUANG, Hsu-feng LEE, Benjamin BRITTON, Chun-che LEE, Steven HOLDCROFT, Jun-jie PANG, Yi-yun HSU, Yu-chao TSENG