Patents by Inventor Steven J. Benerofe

Steven J. Benerofe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6957004
    Abstract: A packaged waveguide for passive connectivity includes waveguides packaged in a ferrule. The ferrule allows the waveguides to be passively aligned to other waveguides, fibers, or optical components, such as to align a first waveguide in the ferrule with a laser diode in a BiDi. In the exemplary embodiment, a second waveguide in the ferrule the BiDi is at a known and fixed distance apart from the first waveguide at an end face of the ferrule. A detector in the BiDi may be positioned so that when the first waveguide is aligned with the laser diode, the second waveguide is also aligned with the detector. Additional functions can be provided with the waveguide. The manufacturing of the BiDi with the waveguides packaged in the ferrule is cost efficient to manufacturer since alignment and connectivity is achieved passively. The cost efficiency can be further improved by using standard components.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: October 18, 2005
    Assignee: Oplink Communications, Inc.
    Inventors: Jenkin A. Richard, Steven J. Benerofe, Eric V. Chamness, George H. Guan
  • Patent number: 6914676
    Abstract: Improved methods and systems for routing and aligning beams and optical elements in an optical device include a multiplexing device and/or a demultiplexing device, which includes an optical alignment element (OAE). The OAE can be configured to substantially compensate for the cumulative alignment errors in the beam path. The OAE allows the optical elements in a device, other than the OAE, to be placed and fixed in place without substantially compensating for optical alignment errors. The OAE is inserted into the beam path and adjusted. This greatly increases the ease in the manufacturing of optical devices, especially for devices with numerous optical elements, and lowers the cost of manufacturing. The multiplexing and/or demultiplexing device can reside within a standard small form factor, such as a GBIC. The devices fold the paths of the traversing beams with a geometry which allows a small package.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: July 5, 2005
    Assignee: Oplink Communications, Inc.
    Inventors: Jenkin A. Richard, Eric V. Chamness, George H. Guan, Steven J. Benerofe, Qunwen Leng, Anjul K. Katare
  • Patent number: 6856435
    Abstract: Improved methods and systems for routing and aligning beams and optical elements in an optical device include a multiplexing device and/or a demultiplexing device, which includes an optical alignment element (OAE). The OAE can be configured to substantially compensate for the cumulative alignment errors in the beam path. The OAE allows the optical elements in a device, other than the OAE, to be placed and fixed in place without substantially compensating for optical alignment errors. The OAE is inserted into the beam path and adjusted. This greatly increases the ease in the manufacturing of optical devices, especially for devices with numerous optical elements, and lowers the cost of manufacturing. The multiplexing and/or demultiplexing device can reside within a standard small form factor, such as a GBIC. The devices fold the paths of the traversing beams with a geometry which allows a small package.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: February 15, 2005
    Assignee: Gigabit Optics Corporation
    Inventors: Jenkin A. Richard, Eric V. Chamness, David F. Moore, Steven J. Benerofe, Don A. Clark, Ryan D. Bruneau
  • Patent number: 6847450
    Abstract: Improved methods and systems for routing and aligning beams and optical elements in an optical device include a multiplexing device and/or a demultiplexing device, which includes an optical alignment element (OAE). The OAE can be configured to substantially compensate for the cumulative alignment errors in the beam path. The OAE allows the optical elements in a device, other than the OAE, to be placed and fixed in place without substantially compensating for optical alignment errors. The OAE is inserted into the beam path and adjusted. This greatly increases the ease in the manufacturing of optical devices, especially for devices with numerous optical elements, and lowers the cost of manufacturing. The multiplexing and/or demultiplexing device can reside within a standard small form factor, such as a GBIC. The devices fold the paths of the traversing beams with a geometry which allows a small package.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: January 25, 2005
    Assignee: Oplink Communications, Inc.
    Inventors: Jenkin A. Richard, Eric V. Chamness, George H. Guan, Anjul K. Katare, Steven J. Benerofe, Qunwen Leng
  • Patent number: 6844932
    Abstract: Improved methods and systems for routing and aligning beams and optical elements in an optical device include a multiplexing device and/or a demultiplexing device, which includes an optical alignment element (OAE). The OAE can be configured to substantially compensate for the cumulative alignment errors in the beam path. The OAE allows the optical elements in a device, other than the OAE, to be placed and fixed in place without substantially compensating for optical alignment errors. The OAE is inserted into the beam path and adjusted. This greatly increases the ease in the manufacturing of optical devices, especially for devices with numerous optical elements, and lowers the cost of manufacturing. The multiplexing and/or demultiplexing device can reside within a standard small form factor, such as a GBIC. The devices fold the paths of the traversing beams with a geometry which allows a small package.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: January 18, 2005
    Assignee: Oplink Communications, Inc.
    Inventors: Jenkin A. Richard, Eric V. Chamness, David F. Moore, Steven J. Benerofe, Don A. Clark, Ryan D. Bruneau
  • Patent number: 6836590
    Abstract: An optical subassembly utilizes a core with a first, second, and third faces. The first and second faces are coupled, non-parallel, and non-co-planar for changing a path of a beam, and their intersection defines an axis. Filters are coupled to the third face. The light path traverses between the first or second face and each filter such that, at each filter, no portion of the light path interferes with any other portion of the light path. The light path also traverses the core in a direction along the axis. This is facilitated by the light path traversing an external surface of a filter at an angle. The device includes adjustable ports residing at the same side of the device. Filters are coupled to the core and optically coupled to the adjustable ports. The light path travels down the core and exit or enter the device via the adjustable ports.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: December 28, 2004
    Assignee: Oplink Communications, Inc.
    Inventors: Jenkin A. Richard, Eric V. Chamness, David F. Moore, George H. Guan, Steven J. Benerofe, Anjul K. Katare, Cameron D. Hinman, Qunwen Leng
  • Patent number: 6781693
    Abstract: Improved methods and systems for routing and aligning beams and optical elements in an optical device include a multiplexing device and/or a demultiplexing device, which includes an optical alignment element (OAE). The OAE can be configured to substantially compensate for the cumulative alignment errors in the beam path. The OAE allows the optical elements in a device, other than the OAE, to be placed and fixed in place without substantially compensating for optical alignment errors. The OAE is inserted into the beam path and adjusted. This greatly increases the ease in the manufacturing of optical devices, especially for devices with numerous optical elements, and lowers the cost of manufacturing. The multiplexing and/or demultiplexing device can reside within a standard small form factor, such as a GBIC. The devices fold the paths of the traversing beams with a geometry which allows a small package.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: August 24, 2004
    Assignee: Gigabit Optics Corporation
    Inventors: Jenkin A. Richard, Eric V. Chamness, David F. Moore, Steven J. Benerofe, Don A. Clark, Ryan D. Bruneau
  • Patent number: 6750969
    Abstract: Improved methods and systems for routing and aligning beams and optical elements in an optical device include a multiplexing device and/or a demultiplexing device, which includes an optical alignment element (OAE). The OAE can be configured to substantially compensate for the cumulative alignment errors in the beam path. The OAE allows the optical elements in a device, other than the OAE, to be placed and fixed in place without substantially compensating for optical alignment errors. The OAE is inserted into the beam path and adjusted. This greatly increases the ease in the manufacturing of optical devices, especially for devices with numerous optical elements, and lowers the cost of manufacturing. The multiplexing and/or demultiplexing device can reside within a standard small form factor, such as a GBIC. The devices fold the paths of the traversing beams with a geometry which allows a small package.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: June 15, 2004
    Assignee: Gigabit Optics Corporation
    Inventors: Jenkin A. Richard, Eric V. Chamness, David F. Moore, Steven J. Benerofe, Don A. Clark, Ryan D. Bruneau
  • Publication number: 20040017970
    Abstract: An optical subassembly utilizes a core with a first, second, and third faces. The first and second faces are coupled, non-parallel, and non-co-planar for changing a path of a beam, and their intersection defines an axis. Filters are coupled to the third face. The light path traverses between the first or second face and each filter such that, at each filter, no portion of the light path interferes with any other portion of the light path. The light path also traverses the core in a direction along the axis. This is facilitated by the light path traversing an external surface of a filter at an angle. The device includes adjustable ports residing at the same side of the device. Filters are coupled to the core and optically coupled to the adjustable ports. The light path travels down the core and exit or enter the device via the adjustable ports.
    Type: Application
    Filed: July 26, 2002
    Publication date: January 29, 2004
    Inventors: Jenkin A. Richard, Eric V. Chamness, David F. Moore, George H. Guan, Steven J. Benerofe, Anjul K. Katare, Cameron D. Hinman, Qunwen Leng
  • Publication number: 20030206707
    Abstract: A packaged waveguide for passive connectivity includes waveguides packaged in a ferrule. The ferrule allows the waveguides to be passively aligned to other waveguides, fibers, or optical components, such as to align a first waveguide in the ferrule with a laser diode in a BiDi. In the exemplary embodiment, a second waveguide in the ferrule the BiDi is at a known and fixed distance apart from the first waveguide at an end face of the ferrule. A detector in the BiDi may be positioned so that when the first waveguide is aligned with the laser diode, the second waveguide is also aligned with the detector. Additional functions can be provided with the waveguide. The manufacturing of the BiDi with the waveguides packaged in the ferrule is cost efficient to manufacturer since alignment and connectivity is achieved passively. The cost efficiency can be further improved by using standard components.
    Type: Application
    Filed: May 3, 2002
    Publication date: November 6, 2003
    Inventors: Jenkin A. Richard, Steven J. Benerofe, Eric V. Chamness, George H. Guan
  • Publication number: 20030123802
    Abstract: Improved methods and systems for routing and aligning beams and optical elements in an optical device include a multiplexing device and/or a demultiplexing device, which includes an optical alignment element (OAE). The OAE can be configured to substantially compensate for the cumulative alignment errors in the beam path. The OAE allows the optical elements in a device, other than the OAE, to be placed and fixed in place without substantially compensating for optical alignment errors. The OAE is inserted into the beam path and adjusted. This greatly increases the ease in the manufacturing of optical devices, especially for devices with numerous optical elements, and lowers the cost of manufacturing. The multiplexing and/or demultiplexing device can reside within a standard small form factor, such as a GBIC. The devices fold the paths of the traversing beams with a geometry which allows a small package.
    Type: Application
    Filed: July 26, 2002
    Publication date: July 3, 2003
    Inventors: Jenkin A. Richard, Eric V. Chamness, David F. Moore, Steven J. Benerofe, Don A. Clark, Ryan D. Bruneau
  • Publication number: 20030118273
    Abstract: Improved methods and systems for routing and aligning beams and optical elements in an optical device include a multiplexing device and/or a demultiplexing device, which includes an optical alignment element (OAE). The OAE can be configured to substantially compensate for the cumulative alignment errors in the beam path. The OAE allows the optical elements in a device, other than the OAE, to be placed and fixed in place without substantially compensating for optical alignment errors. The OAE is inserted into the beam path and adjusted. This greatly increases the ease in the manufacturing of optical devices, especially for devices with numerous optical elements, and lowers the cost of manufacturing. The multiplexing and/or demultiplexing device can reside within a standard small form factor, such as a GBIC. The devices fold the paths of the traversing beams with a geometry which allows a small package.
    Type: Application
    Filed: July 26, 2002
    Publication date: June 26, 2003
    Inventors: Jenkin A. Richard, Eric V. Chamness, David F. Moore, Steven J. Benerofe, Don A. Clark, Ryan D. Bruneau
  • Publication number: 20030091281
    Abstract: Improved methods and systems for routing and aligning beams and optical elements in an optical device include a multiplexing device and/or a demultiplexing device, which includes an optical alignment element (OAE). The OAE can be configured to substantially compensate for the cumulative alignment errors in the beam path. The OAE allows the optical elements in a device, other than the OAE, to be placed and fixed in place without substantially compensating for optical alignment errors. The OAE is inserted into the beam path and adjusted. This greatly increases the ease in the manufacturing of optical devices, especially for devices with numerous optical elements, and lowers the cost of manufacturing. The multiplexing and/or demultiplexing device can reside within a standard small form factor, such as a GBIC. The devices fold the paths of the traversing beams with a geometry which allows a small package.
    Type: Application
    Filed: July 26, 2002
    Publication date: May 15, 2003
    Inventors: Jenkin A. Richard, Eric V. Chamness, David F. Moore, Steven J. Benerofe, Don A. Clark, Ryan D. Bruneau
  • Publication number: 20030076559
    Abstract: Improved methods and systems for routing and aligning beams and optical elements in an optical device include a multiplexing device and/or a demultiplexing device, which includes an optical alignment element (OAE). The OAE can be configured to substantially compensate for the cumulative alignment errors in the beam path. The OAE allows the optical elements in a device, other than the OAE, to be placed and fixed in place without substantially compensating for optical alignment errors. The OAE is inserted into the beam path and adjusted. This greatly increases the ease in the manufacturing of optical devices, especially for devices with numerous optical elements, and lowers the cost of manufacturing. The multiplexing and/or demultiplexing device can reside within a standard small form factor, such as a GBIC. The devices fold the paths of the traversing beams with a geometry which allows a small package.
    Type: Application
    Filed: July 26, 2002
    Publication date: April 24, 2003
    Inventors: Jenkin A. Richard, Eric V. Chamness, David F. Moore, Steven J. Benerofe, Don A. Clark, Ryan D. Bruneau
  • Publication number: 20030048443
    Abstract: Improved methods and systems for routing and aligning beams and optical elements in an optical device include a multiplexing device and/or a demultiplexing device, which includes an optical alignment element (OAE). The OAE can be configured to substantially compensate for the cumulative alignment errors in the beam path. The OAE allows the optical elements in a device, other than the OAE, to be placed and fixed in place without substantially compensating for optical alignment errors. The OAE is inserted into the beam path and adjusted. This greatly increases the ease in the manufacturing of optical devices, especially for devices with numerous optical elements, and lowers the cost of manufacturing. The multiplexing and/or demultiplexing device can reside within a standard small form factor, such as a GBIC. The devices fold the paths of the traversing beams with a geometry which allows a small package.
    Type: Application
    Filed: July 26, 2002
    Publication date: March 13, 2003
    Inventors: Jenkin A. Richard, Eric V. Chamness, George H. Guan, Steven J. Benerofe, Qunwen Leng, Anjul K. Katare
  • Publication number: 20030020913
    Abstract: Improved methods and systems for routing and aligning beams and optical elements in an optical device include a multiplexing device and/or a demultiplexing device, which includes an optical alignment element (OAE). The OAE can be configured to substantially compensate for the cumulative alignment errors in the beam path. The OAE allows the optical elements in a device, other than the OAE, to be placed and fixed in place without substantially compensating for optical alignment errors. The OAE is inserted into the beam path and adjusted. This greatly increases the ease in the manufacturing of optical devices, especially for devices with numerous optical elements, and lowers the cost of manufacturing. The multiplexing and/or demultiplexing device can reside within a standard small form factor, such as a GBIC. The devices fold the paths of the traversing beams with a geometry which allows a small package.
    Type: Application
    Filed: July 26, 2002
    Publication date: January 30, 2003
    Inventors: Jenkin A. Richard, Eric V. Chamness, George H. Guan, Anjul K. Katare, Steven J. Benerofe, Qunwen Leng
  • Publication number: 20020135767
    Abstract: An improved method for aligning a plurality of optical elements in an optical device, includes: placing at least one optical element in a beam path; fixing the optical element in place without substantially compensating for errors in optical alignment; placing at least a one optical alignment element (OAE) in the beam path; and aligning the beam path to a desired beam path by adjusting the OAE. The alignment of the beam path substantially compensates for cumulative alignment errors in the beam path. The method increases the ease of manufacturing of optical devices and lowers the cost of manufacturing. The tolerances of the placement of optical elements are increased, and the optical element does not need special features for alignment.
    Type: Application
    Filed: July 27, 2001
    Publication date: September 26, 2002
    Inventors: Jenkin A. Richard, Eric V. Chamness, David F. Moore, Ryan D. Bruneau, George H. Guan, Steven J. Benerofe, Nader Mahvan, Don Andre Clark
  • Patent number: 5530541
    Abstract: An atomic absorption apparatus using a laser for producing a light beam having a characteristic frequency f, typically ranging from several MHz to several GHz, and a characteristic polarization for measuring the absorption of that light beam by atoms of interest. The apparatus has a modulator to generate a modulating signal to modulate the characteristic frequency f and produce a phase-modulated light beam. The apparatus includes a domain where the specific atoms are located. This domain is positioned in the path of the phase-modulated light beam such that the phase-modulated light beam encounters the specific atoms when passing through the domain and some of the specific atoms absorb a portion of the phase-modulated light beam. Typically, the domains containing the atoms of interest include process chambers for vacuum coating, ion milling, sputtering, mass spectroscopy vapor coating or deposition, and the like.
    Type: Grant
    Filed: February 28, 1995
    Date of Patent: June 25, 1996
    Assignee: Board of Trustees of the Leland Stanford Junior University
    Inventors: Charles H. Ahn, Malcolm R. Beasley, Steven J. Benerofe, Martin M. Fejer, Robert H. Hammond, Weizhi Wang