Patents by Inventor Steven J. Bennett

Steven J. Bennett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125719
    Abstract: A defined peak region residing between about 3.2 and 3.4 ppm of a proton NMR spectrum of an in vitro biosample is electronically evaluated to determine a level of trimethylamine-N-oxide (“TMAO”). The biosample may be any suitable biosamples including human serum with a normal biologic range of between about 1-50 ?M or urine with a normal biologic range of between about 0-1000 ?M.
    Type: Application
    Filed: September 21, 2023
    Publication date: April 18, 2024
    Applicant: Liposcience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Dennis W. Bennett, Steven P. Matyus, Stanley L. Hazen
  • Patent number: 6798843
    Abstract: A wideband predistortion system compensates for a nonlinear amplifier's frequency and time dependent distortion characteristics. The system comprises a data structure in which each element stores a set of compensation parameters (preferably including FIR filter coefficients) for predistorting the wideband input transmission signal. The parameter sets are preferably indexed within the data structure according to multiple signal characteristics, such as instantaneous amplitude and integrated signal envelope, each of which corresponds to a respective dimension of the data structure. To predistort the input transmission signal, an addressing circuit digitally generates a set of data structure indices from the input transmission signal, and the indexed set of compensation parameters is loaded into a compensation circuit which digitally predistorts the input transmission signal.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: September 28, 2004
    Assignee: PMC-Sierra, Inc.
    Inventors: Andrew S. Wright, Bartholomeus T. W. Klijsen, Paul V. Yee, Chun Yeung Kevin Hung, Steven J. Bennett
  • Patent number: 6697436
    Abstract: A predistortion system adaptively compensates for distortion introduced along one or more amplification chains of a power amplifier system. In one embodiment, the predistortion system includes a plurality of compensation circuits, each of which is coupled to, and configured to digitally predistort an input transmission signal to, a respective amplification chain of an antenna array system. Each such amplification chain has an output coupled to a respective antenna of the antenna array system. A processing unit monitors the input transmission signals to, and corresponding output signals from, each of the amplification chains on a time-shared basis, and generates updates to the compensation parameters used the corresponding compensation circuits.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: February 24, 2004
    Assignee: PMC-Sierra, Inc.
    Inventors: Andrew S. Wright, Bartholomeus T. W. Klijsen, Paul V. Yee, Chun Yeung Kevin Hung, Steven J. Bennett
  • Patent number: 6587514
    Abstract: A wideband predistortion system compensates for a nonlinear amplifier's frequency and time dependent AM-AM and AM-PM distortion characteristics. The system comprises a data structure in which each element stores a set of compensation parameters (preferably including FIR filter coefficients) for predistorting the wideband input transmission signal. The parameter sets are preferably indexed within the data structure according to multiple signal characteristics, such as instantaneous amplitude and integrated signal envelope, each of which corresponds to a respective dimension of the data structure. To predistort the input transmission signal, an addressing circuit digitally generates a set of data structure indices from the input transmission signal, and the indexed set of compensation parameters is loaded into a compensation circuit which digitally predistorts the input transmission signal.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: July 1, 2003
    Assignee: PMC-Sierra, Inc.
    Inventors: Andrew S. Wright, Bartholomeus T. W. Klijsen, Paul V. Yee, Chun Yeung Kevin Hung, Steven J. Bennett
  • Patent number: 6476670
    Abstract: A wideband predistortion system compensates for a nonlinear amplifier's frequency and time dependent AM—AM and AM-PM distortion characteristics. The system comprises a data structure in which each element stores a set of compensation parameters (preferably including FIR filter coefficients) for predistorting the wideband input transmission signal. The parameter sets are preferably indexed within the data structure according to multiple signal characteristics, such as instantaneous amplitude and integrated signal envelope, each of which corresponds to a respective dimension of the data structure. To predistort the input transmission signal, an addressing circuit digitally generates a set of data structure indices from the input transmission signal, and the indexed set of compensation parameters is loaded into a compensation circuit which digitally predistorts the input transmission signal.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: November 5, 2002
    Assignee: PMC-Sierra, Inc.
    Inventors: Andrew S. Wright, Bartholomeus T. W. Klijsen, Paul V. Yee, Chun Yeung Kevin Hung, Steven J. Bennett
  • Patent number: 6459334
    Abstract: A wideband predistortion system compensates for a nonlinear amplifier's frequency and time dependent AM—AM and AM-PM distortion characteristics. The system comprises a data structure in which each element stores a set of compensation parameters (preferably including FIR filter coefficients) for predistorting the wideband input transmission signal. The parameter sets are preferably indexed within the data structure according to multiple signal characteristics, such as instantaneous amplitude and integrated signal envelope, each of which corresponds to a respective dimension of the data structure. To predistort the input transmission signal, an addressing circuit digitally generates a set of data structure indices from the input transmission signal, and the indexed set of compensation parameters is loaded into a compensation circuit which digitally predistorts the input transmission signal.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: October 1, 2002
    Assignee: PMC-Sierra, Inc.
    Inventors: Andrew S. Wright, Bartholomeus T. W. Klijsen, Paul V. Yee, Chun Yeung Kevin Hung, Steven J. Bennett
  • Patent number: 6388513
    Abstract: A wideband predistortion system compensates for a nonlinear amplifier's frequency and time dependent AM-AM and AM-PM distortion characteristics. The system comprises a data structure in which each element stores a set of compensation parameters (preferably including FIR filter coefficients) for predistorting the wideband input transmission signal. The parameter sets arc preferably indexed within the data structure according to multiple signal characteristics, such as instantaneous amplitude and integrated signal envelope, each of which corresponds to a respective dimension of the data structure. To predistort the input transmission signal, an addressing circuit digitally generates a set of data structure indices from the input transmission signal, and the indexed set of compensation parameters is loaded into a compensation circuit which digitally predistorts the input transmission signal.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: May 14, 2002
    Assignee: PMC-Sierrs, Inc.
    Inventors: Andrew S. Wright, Bartholomeus T. W. Klijsen, Paul V. Yee, Chun Yeung Kevin Hung, Steven J. Bennett
  • Publication number: 20020044014
    Abstract: A wideband predistortion system compensates for a nonlinear amplifier's frequency and time dependent AM-AM and AM-PM distortion characteristics. The system comprises a data structure in which each element stores a set of compensation parameters (preferably including FIR filter coefficients) for predistorting the wideband input transmission signal. The parameter sets are preferably indexed within the data structure according to multiple signal characteristics, such as instantaneous amplitude and integrated signal envelope, each of which corresponds to a respective dimension of the data structure. To predistort the input transmission signal, an addressing circuit digitally generates a set of data structure indices from the input transmission signal, and the indexed set of compensation parameters is loaded into a compensation circuit which digitally predistorts the input transmission signal.
    Type: Application
    Filed: July 5, 2001
    Publication date: April 18, 2002
    Inventors: Andrew S. Wright, Bartholomeus T.W. Klijsen, Paul V. Yee, Chun Yeung Kevin Hung, Steven J. Bennett
  • Patent number: 6356146
    Abstract: A wideband predistortion system compensates for a nonlinear amplifier's frequency and time dependent AM-AM and AM-PM distortion characteristics. The system comprises a data structure in which each element stores a set of compensation parameters (preferably including FIR filter coefficients) for predistorting the wideband input transmission signal. The parameter sets are preferably indexed within the data structure according to multiple signal characteristics, such as instantaneous amplitude and integrated signal envelope, each of which corresponds to a respective dimension of the data structure. To predistort the input transmission signal, an addressing circuit digitally generates a set of data structure indices from the input transmission signal, and the indexed set of compensation parameters is loaded into a compensation circuit which digitally predistorts the input transmission signal.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: March 12, 2002
    Assignee: PMC-Sierra, Inc.
    Inventors: Andrew S. Wright, Bartholomeus T. W. Klijsen, Paul V. Yee, Chun Yeung Kevin Hung, Steven J. Bennett
  • Patent number: 6342810
    Abstract: A wideband predistortion system compensates for a nonlinear amplifier's frequency and time dependent AM—AM and AM-PM distortion characteristics. The system comprises a data structure in which each element stores a set of compensation parameters (preferably including FIR filter coefficients) for predistorting the wideband input transmission signal. The parameter sets are preferably indexed within the data structure according to multiple signal characteristics, such as instantaneous amplitude and integrated signal envelope, each of which corresponds to a respective dimension of the data structure. To predistort the input transmission signal, an addressing circuit digitally generates a set of data structure indices from the input transmission signal, and the indexed set of compensation parameters is loaded into a compensation circuit which digitally predistorts the input transmission signal.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: January 29, 2002
    Assignee: PMC-Sierra, Inc.
    Inventors: Andrew S. Wright, Bartholomeus T. W. Klijsen, Paul V. Yee, Chun Yeung Kevin Hung, Steven J. Bennett
  • Publication number: 20020008578
    Abstract: A wideband predistortion system compensates for a nonlinear amplifier's frequency and time dependent AM-AM and AM-PM distortion characteristics. The system comprises a data structure in which each element stores a set of compensation parameters (preferably including FIR filter coefficients) for predistorting the wideband input transmission signal. The parameter sets are preferably indexed within the data structure according to multiple signal characteristics, such as instantaneous amplitude and integrated signal envelope, each of which corresponds to a respective dimension of the data structure. To predistort the input transmission signal, an addressing circuit digitally generates a set of data structure indices from the input transmission signal, and the indexed set of compensation parameters is loaded into a compensation circuit which digitally predistorts the input transmission signal.
    Type: Application
    Filed: July 5, 2001
    Publication date: January 24, 2002
    Inventors: Andrew S. Wright, Bartholomeus T.W. Klijsen, Paul V. Yee, Chun Yeung Kevin Hung, Steven J. Bennett
  • Publication number: 20010050592
    Abstract: A wideband predistortion system compensates for a nonlinear amplifier's frequency and time dependent AM-AM and AM-PM distortion characteristics. The system comprises a data structure in which each element stores a set of compensation parameters (preferably including FIR filter coefficients) for predistorting the wideband input transmission signal. The parameter sets are preferably indexed within the data structure according to multiple signal characteristics, such as instantaneous amplitude and integrated signal envelope, each of which corresponds to a respective dimension of the data structure. To predistort the input transmission signal, an addressing circuit digitally generates a set of data structure indices from the input transmission signal, and the indexed set of compensation parameters is loaded into a compensation circuit which digitally predistorts the input transmission signal.
    Type: Application
    Filed: July 5, 2001
    Publication date: December 13, 2001
    Inventors: Andrew S. Wright, Bartholomeus T.W. Klijsen, Paul V. Yee, Chun Yeung Kevin Hung, Steven J. Bennett
  • Patent number: 6313703
    Abstract: A LINC amplifier of a radio frequency transmitter provides substantially linear amplification from two nonlinear amplifiers by decomposing the original signal into two constant amplitude envelope, phase varying signals, which, when combined, constructively and destructively interfere to re-form the original signal. The output of the LINC amplifier, which is to be transmitted via an antenna, is an amplified form of the original signal. The LINC amplifier uses a digital control mechanism to control and adapt a digital compensation network that directly compensates for the imperfections of the analog RF environment, including the amplifiers. The mechanism monitors the combined amplifier output and adjusts the signal components in order to precisely compensate for any differences in the characteristics of the separate signal paths which would cause the combination not to accurately represent the original signal.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: November 6, 2001
    Assignee: Datum Telegraphic, INC
    Inventors: Andrew S. Wright, Steven J. Bennett
  • Patent number: 6112055
    Abstract: A paging protocol includes header synchronization and system information segments containing information that allows a pager to conserve power. These segments can indicate a schedule of transmissions, and the channels of other transmissions. The pager can use this information to reduce the time the pager is in a high-power mode. In addition, the addresses are ordered so that the pager can more quickly determine whether a page is addressed to that particular pager. Further, the pager can activate circuitry in a sequenced manner to reduce peak power usage. The transmissions on different channels are synchronized in an offset manner so that the pager can scan one channel and switch to a next channel and immediately receive the start of a frame. Still further, the pager can be configured to perform narrowing searches during the initial acquisition process, which are then widened if no active channels are detected.
    Type: Grant
    Filed: March 10, 1999
    Date of Patent: August 29, 2000
    Assignee: Glenayre Electronics, Inc.
    Inventors: Steven J. Bennett, Marlo Rene Gothe, Kenneth Lee
  • Patent number: 6097933
    Abstract: A paging protocol includes header synchronization and system information segments containing information that allows a pager to conserve power. These segments can indicate a schedule of transmissions, and the channels of other transmissions. The pager can use this information to reduce the time the pager is in a high-power mode. In addition, the addresses are ordered so that the pager can more quickly determine whether a page is addressed to that particular pager. Further, the pager can activate circuitry in a sequenced manner to reduce peak power usage. The transmissions on different channels are synchronized in an offset manner so that the pager can scan one channel and switch to a next channel and immediately receive the start of a frame. Still further, the pager can be configured to perform narrowing searches during the initial acquisition process, which are then widened if no active channels are detected.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: August 1, 2000
    Assignee: Glenayre Electronics, Inc.
    Inventors: Steven J. Bennett, Marlo Rene Gothe, Kenneth Lee
  • Patent number: 6054894
    Abstract: The inventive LINC amplifier provides substantially linear amplification from two nonlinear amplifiers by decomposing the original signal into two constant amplitude envelope, phase varying signals, which, when combined, constructively and destructively interfere to re-form the original signal. The output of the LINC amplifier, which is to be transmitted via an antenna, is an amplified form of the original signal. The inventive LINC amplifier utilizes a digital control mechanism to control and adapt a digital compensation network that directly compensates for the imperfections of the analog RF environment, including the amplifiers. The mechanism monitors the combined amplifier output and adjusts the signal components in order to precisely compensate for any differences in the characteristics of the separate signal paths which would cause the combination not to accurately represent the original signal.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: April 25, 2000
    Assignee: Datum Telegraphic Inc.
    Inventors: Andrew S. Wright, Steven J. Bennett
  • Patent number: 6054896
    Abstract: A LINC amplifier of a radio frequency transmitter provides substantially linear amplification from two nonlinear amplifiers by decomposing the original signal into two constant amplitude envelope, phase varying signals, which, when combined, constructively and destructively interfere to re-form the original signal. The output of the LINC amplifier, which is to be transmitted via an antenna, is an amplified form of the original signal. The LINC amplifier uses a digital control mechanism to control and adapt a digital compensation network that directly compensates for the imperfections of the analog RF environment, including the amplifiers. The mechanism monitors the combined amplifier output and adjusts the signal components in order to precisely compensate for any differences in the characteristics of the separate signal paths which would cause the combination not to accurately represent the original signal.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: April 25, 2000
    Assignee: Datum Telegraphic Inc.
    Inventors: Andrew S. Wright, Steven J. Bennett
  • Patent number: 5990738
    Abstract: A LINC amplifier of a radio frequency transmitter provides substantially linear amplification from two nonlinear amplifiers by decomposing the original signal into two constant amplitude envelope, phase varying signals, which, when combined, constructively and destructively interfere to re-form the original signal. The output of the LINC amplifier, which is to be transmitted via an antenna, is an amplified form of the original signal. The LINC amplifier uses a digital control mechanism to control and adapt a digital compensation network that directly compensates for the imperfections of the analog RF environment, including the amplifiers. The mechanism monitors the combined amplifier output and adjusts the signal components in order to precisely compensate for any differences in the characteristics of the separate signal paths which would cause the combination not to accurately represent the original signal.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: November 23, 1999
    Assignee: Datum Telegraphic Inc.
    Inventors: Andrew S. Wright, Steven J. Bennett
  • Patent number: 5990734
    Abstract: A LINC amplifier of a radio frequency transmitter provides substantially linear amplification from two nonlinear amplifiers by decomposing the original signal into two constant amplitude envelope, phase varying signals, which, when combined, constructively and destructively interfere to re-form the original signal. The output of the LINC amplifier, which is to be transmitted via an antenna, is an amplified form of the original signal. The LINC amplifier uses a digital control mechanism to control and adapt a digital compensation network that directly compensates for the imperfections of the analog RF environment, including the amplifiers. The mechanism monitors the combined amplifier output and adjusts the signal components in order to precisely compensate for any differences in the characteristics of the separate signal paths which would cause the combination not to accurately represent the original signal.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: November 23, 1999
    Assignee: Datum Telegraphic Inc.
    Inventors: Andrew S. Wright, Steven J. Bennett
  • Patent number: 5446466
    Abstract: A phase modulator for a position indicating radio beacon which includes a digital memory circuit having a plurality of sets of stored numerical amplitude values with each set corresponding to a sine wave of a given phase and with at least three values in each set. A selection circuit selects phase values from the memory circuit in steps between a predetermined angular range in response to input data and, for each phase value, transfers the set of amplitude values in series at spaced apart time intervals to a digital to analog converter. A high frequency filter has an input coupled to an output of the digital to analog converter such that a sine wave is produced at an output of the high frequency filter.
    Type: Grant
    Filed: May 12, 1993
    Date of Patent: August 29, 1995
    Assignee: MPR Teltech Ltd.
    Inventor: Steven J. Bennett