Patents by Inventor Steven J. Brandt
Steven J. Brandt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20190339465Abstract: A fiber optic cassette includes a body defining a front and an opposite rear. A cable entry location is defined on the body for a cable to enter the cassette, wherein a plurality of optical fibers from the cable extend into the cassette and form terminations at non-conventional connectors adjacent the front of the body. A flexible substrate is positioned between the cable entry location and the non-conventional connectors adjacent the front of the body, the flexible substrate rigidly supporting the plurality of optical fibers. Each of the non-conventional connectors adjacent the front of the body includes a ferrule, a ferrule hub supporting the ferrule, and a split sleeve surrounding the ferrule.Type: ApplicationFiled: May 20, 2019Publication date: November 7, 2019Applicants: CommScope Technologies LLC, CommScope Asia Holdings B.V., CommScope Connectivity Spain, S.L., CommScope Connectivity UK LimitedInventors: David P. MURRAY, Ton BOLHAAR, Paul SCHNEIDER, Rafael MATEO, Luis COBACHO, Michael WENTWORTH, Steven J. BRANDT, Marcellus PJ BUIJS, Alexander DORRESTEIN, Jan Willem RIETVELD
-
Patent number: 10295761Abstract: A fiber optic cassette includes a body defining a front and an opposite rear. A cable entry location is defined on the body for a cable to enter the cassette, wherein a plurality of optical fibers from the cable extend into the cassette and form terminations at non-conventional connectors adjacent the front of the body. A flexible substrate is positioned between the cable entry location and the non-conventional connectors adjacent the front of the body, the flexible substrate rigidly supporting the plurality of optical fibers. Each of the non-conventional connectors adjacent the front of the body includes a ferrule, a ferrule hub supporting the ferrule, and a split sleeve surrounding the ferrule.Type: GrantFiled: February 19, 2018Date of Patent: May 21, 2019Assignees: CommScope Technologies LLC, CommScope Asia Holdings B.V., CommScope Connectivity Spain, S.L., CommScope Connectivity UK LimitedInventors: David Patrick Murray, Ton Bolhaar, Paul Schneider, Rafael Mateo, Luis Cabacho, Michael Wentworth, Steven J. Brandt, Marcellus PJ Buijs, Alexander Dorrestein, Jan Willem Rietveld
-
Publication number: 20190107678Abstract: A communications connection system includes an adapter module defining at least first and second ports and at least one media reading interface mounted at one of the ports. The first adapter module is configured to receive a fiber optic connector at each port. Some type of connectors may be formed as duplex connector arrangements. Some types of adapters may include ports without media reading interfaces. Some types of media reading interfaces include contact members having three contact sections.Type: ApplicationFiled: October 1, 2018Publication date: April 11, 2019Inventors: John Anderson, Steven J. Brandt, Joseph C. Coffey, Kamlesh G. Patel, Cyle D. Petersen, Michael D. Schroeder, John Stasny
-
Patent number: 10101542Abstract: In managed connectivity systems, media reading interfaces at adapter blocks read information from storage devices attached to plug connectors. Media reading interfaces include one or more contact members. The contact members of certain types of media reading interfaces are held together by a base body to be handled as a unit. Certain types of media reading interfaces have support contacts that increase the beam length of the contact members. Certain types of media reading interfaces rock within the adapter block.Type: GrantFiled: September 15, 2017Date of Patent: October 16, 2018Assignee: CommScope Technologies LLCInventors: Ryan Kostecka, Steven J. Brandt, Jonathan T. Lawson
-
Patent number: 10088636Abstract: A communications connection system includes an adapter module defining at least first and second ports and at least one media reading interface mounted at one of the ports. The first adapter module is configured to receive a fiber optic connector at each port. Some type of connectors may be formed as duplex connector arrangements. Some types of adapters may include ports without media reading interfaces. Some types of media reading interfaces include contact members having three contact sections.Type: GrantFiled: April 21, 2017Date of Patent: October 2, 2018Assignee: CommScope Technologies LLCInventors: Steven J. Brandt, Joseph C. Coffey, Cyle D. Petersen, Michael D. Schroeder, John Stasny
-
Publication number: 20180224611Abstract: A fiber optic cassette includes a body defining a front and an opposite rear. A cable entry location is defined on the body for a cable to enter the cassette, wherein a plurality of optical fibers from the cable extend into the cassette and form terminations at non-conventional connectors adjacent the front of the body. A flexible substrate is positioned between the cable entry location and the non-conventional connectors adjacent the front of the body, the flexible substrate rigidly supporting the plurality of optical fibers. Each of the non-conventional connectors adjacent the front of the body includes a ferrule, a ferrule hub supporting the ferrule, and a split sleeve surrounding the ferrule.Type: ApplicationFiled: February 19, 2018Publication date: August 9, 2018Inventors: David Patrick Murray, Ton BOLHAAR, Paul SCHNEIDER, Rafael MATEO, Luis Cabacho, Michael WENTWORTH, Steven J. BRANDT, Marcellus PJ BUIJS, Alexander DORRESTEIN, Jan Willem RIETVELD
-
Publication number: 20180156981Abstract: A double flexible optical circuit includes: a flexible substrate supporting a plurality of optical fibers; a first connector terminating the optical fibers at a first end of the double flexible optical circuit; and a second connector terminating the optical fibers at a second end of the double flexible optical circuit. Each of the optical fibers is positioned in one of a plurality of separate extensions formed by the flexible substrate as the optical fibers extend from the first connector to the second connector. The first and second connectors are configured to be tested when the first and second connectors are connected through the double flexible optical circuit. The double flexible optical circuit is configured to be divided in half once the testing is complete to form two separate flexible optical circuits.Type: ApplicationFiled: August 17, 2017Publication date: June 7, 2018Inventors: David Patrick MURRAY, Ton BOLHAAR, Paul SCHNEIDER, Rafael MATEO, Luis CABACHO, Michael WENTWORTH, Steven J. BRANDT, Marcellus PJ BUIJS, Alexander DORRESTEIN, Jan Willem RIETVELD
-
Patent number: 9974200Abstract: A universal cable bracket that enables one or more cables to be secured to a telecommunications chassis accommodates cables of various sizes and styles. The cable bracket is configured to be mounted in one of multiple orientations relative to the chassis. One or more fasteners can be inserted through apertures in the bracket and a chassis mounting surface to secure the bracket into the desired orientation. Cables or fanout arrangements can be secured to a platform of the bracket via cable ties or other windings.Type: GrantFiled: July 1, 2016Date of Patent: May 15, 2018Assignee: COMMSCOPE TECHNOLOGIES LLCInventors: Ryan Kostecka, Steven J. Brandt, John P. Anderson
-
Publication number: 20180088286Abstract: In managed connectivity systems, media reading interfaces at adapter blocks read information from storage devices attached to plug connectors. Media reading interfaces include one or more contact members. The contact members of certain types of media reading interfaces are held together by a base body to be handled as a unit. Certain types of media reading interfaces have support contacts that increase the beam length of the contact members. Certain types of media reading interfaces rock within the adapter block.Type: ApplicationFiled: September 15, 2017Publication date: March 29, 2018Inventors: Ryan Kostecka, Steven J. Brandt, Jonathan T. Lawson
-
Patent number: 9897767Abstract: A fiber optic cassette includes a body defining a front and an opposite rear. A cable entry location is defined on the body for a cable to enter the cassette, wherein a plurality of optical fibers from the cable extend into the cassette and form terminations at non-conventional connectors adjacent the front of the body. A flexible substrate is positioned between the cable entry location and the non-conventional connectors adjacent the front of the body, the flexible substrate rigidly supporting the plurality of optical fibers. Each of the non-conventional connectors adjacent the front of the body includes a ferrule, a ferrule hub supporting the ferrule, and a split sleeve surrounding the ferrule.Type: GrantFiled: October 21, 2016Date of Patent: February 20, 2018Assignees: CommScope Technologies LLC, CommScope Asia Holdings B.V., CommScope Connectivity Spain, S.L., CommScope Connectivity UK LimitedInventors: David Patrick Murray, Ton Bolhaar, Paul Schneider, Rafael Mateo, Luis Cabacho, Michael Wentworth, Steven J. Brandt, Marcellus P J Buijs, Alexander Dorrestein, Jan Willem Rietveld
-
Patent number: 9804337Abstract: A communications connection system includes a fiber optic adapter module configured to receive multiple fiber optic connectors. The fiber optic adapter module includes one or more media reading interfaces. Each media reading interface is configured to read physical layer information stored on one of the fiber optic connectors received at the adapter module. Certain types of media reading interfaces extend between an internal passage of the adapter module and an external surface of the adapter module.Type: GrantFiled: February 11, 2011Date of Patent: October 31, 2017Assignee: COMMSCOPE TECHNOLOGIES LLCInventors: John Anderson, Steven J. Brandt, Joseph C. Coffey, Kamlesh G. Patel, Cyle D. Petersen, Michael D. Schroeder, John Stasny
-
Patent number: 9798096Abstract: An adapter block assembly includes at least one adapter block; a circuit board; a first contact set; and a second contact set. The contact sets are disposed at apertures defined in the adapter block and rotated 180° from each other. Each adapter block includes first and second latching arrangements that retain separately manufactured alignment arrangements against movement along the passages. The first latching arrangements include latching arms disposed at the apertures. The second latching arms include ramps and stops disposed opposite the apertures. Optical connectors suitable for plugging into the adapter block include an outer housing having an area of increased thickness of hold a storage device and an inner housing with a channel to accommodate the area of increased thickness of the outer housing.Type: GrantFiled: February 2, 2015Date of Patent: October 24, 2017Assignees: COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE CONNECTIVITY UK LIMITEDInventors: Bruce Ogren, Rod Schoenfelder, Christopher Charles Taylor, Steven J. Brandt
-
Publication number: 20170293087Abstract: A communications connection system includes an adapter module defining at least first and second ports and at least one media reading interface mounted at one of the ports. The first adapter module is configured to receive a fiber optic connector at each port. Some type of connectors may be formed as duplex connector arrangements. Some types of adapters may include ports without media reading interfaces. Some types of media reading interfaces include contact members having three contact sections.Type: ApplicationFiled: April 21, 2017Publication date: October 12, 2017Inventors: John Anderson, Steven J. Brandt, Joseph C. Coffey, Kamlesh G. Patel, Cyle D. Petersen, Michael D. Schroeder, John Stasny
-
Patent number: 9753229Abstract: A double flexible optical circuit includes: a flexible substrate supporting a plurality of optical fibers; a first connector terminating the optical fibers at a first end of the double flexible optical circuit; and a second connector terminating the optical fibers at a second end of the double flexible optical circuit. Each of the optical fibers is positioned in one of a plurality of separate extensions formed by the flexible substrate as the optical fibers extend from the first connector to the second connector. The first and second connectors are configured to be tested when the first and second connectors are connected through the double flexible optical circuit. The double flexible optical circuit is configured to be divided in half once the testing is complete to form two separate flexible optical circuits.Type: GrantFiled: September 25, 2013Date of Patent: September 5, 2017Assignees: CommScope Connectivity UK Limited, Commscope Connectivity Spain, S.L., CommScope Asia Holdings B.V., CommScope Technologies LLCInventors: David Patrick Murray, Ton Bolhaar, Paul Schneider, Rafael Mateo, Luis Cabacho, Michael Wentworth, Steven J. Brandt, Marcellus P J Buijs, Alexander Dorrestein, Jan Willem Rietveld
-
Patent number: 9684134Abstract: A communications connection system includes a fiber optic connector including a storage device having memory configured to store physical layer information. The storage device also includes at least one contact member that is electrically connected to the memory. Certain types of fiber optic connectors have the storage device mounted to a key of the fiber optic connector. Certain types of fiber optic connectors have the storage device mounted in a cavity defined in the fiber optic connector.Type: GrantFiled: September 21, 2015Date of Patent: June 20, 2017Assignee: COMMSCOPE TECHNOLOGIES LLCInventors: John Paul Anderson, Steven J. Brandt, Joseph C. Coffey, Kamlesh G. Patel, Cyle D. Petersen, Michael D. Schroeder, John Stasny
-
Publication number: 20170131485Abstract: A fiber optic cassette includes a body defining a front and an opposite rear. A cable entry location is defined on the body for a cable to enter the cassette, wherein a plurality of optical fibers from the cable extend into the cassette and form terminations at non-conventional connectors adjacent the front of the body. A flexible substrate is positioned between the cable entry location and the non-conventional connectors adjacent the front of the body, the flexible substrate rigidly supporting the plurality of optical fibers. Each of the non-conventional connectors adjacent the front of the body includes a ferrule, a ferrule hub supporting the ferrule, and a split sleeve surrounding the ferrule.Type: ApplicationFiled: October 21, 2016Publication date: May 11, 2017Inventors: David Patrick MURRAY, Ton BOLHAAR, Paul SCHNEIDER, Rafael MATEO, Luis CABACHO, Michael WENTWORTH, Steven J. BRANDT, Marcellus PJ BUIJS, Alexander DORRESTEIN, Jan Willem RIETVELD
-
Patent number: 9632255Abstract: A communications connection system includes an adapter module defining at least first and second ports and at least one media reading interface mounted at one of the ports. The first adapter module is configured to receive a fiber optic connector at each port. Some type of connectors may be formed as duplex connector arrangements. Some types of adapters may include ports without media reading interfaces. Some types of media reading interfaces include contact members having three contact sections.Type: GrantFiled: March 20, 2014Date of Patent: April 25, 2017Assignee: CommScope Technologies LLCInventors: John Anderson, Steven J. Brandt, Joseph C. Coffey, Kamlesh G. Patel, Cyle D. Petersen, Michael D. Schroeder, John Stasny
-
Publication number: 20170006722Abstract: A universal cable bracket that enables one or more cables to be secured to a telecommunications chassis accommodates cables of various sizes and styles. The cable bracket is configured to be mounted in one of multiple orientations relative to the chassis. One or more fasteners can be inserted through apertures in the bracket and a chassis mounting surface to secure the bracket into the desired orientation. Cables or fanout arrangements can be secured to a platform of the bracket via cable ties or other windings.Type: ApplicationFiled: July 1, 2016Publication date: January 5, 2017Inventors: Ryan Kostecka, Steven J. Brandt, John P. Anderson
-
Patent number: 9488788Abstract: A fiber optic cassette includes a body defining a front and an opposite rear. A cable entry location is defined on the body for a cable to enter the cassette, wherein a plurality of optical fibers from the cable extend into the cassette and form terminations at non-conventional connectors adjacent the front of the body. A flexible substrate is positioned between the cable entry location and the non-conventional connectors adjacent the front of the body, the flexible substrate rigidly supporting the plurality of optical fibers. Each of the non-conventional connectors adjacent the front of the body includes a ferrule, a ferrule hub supporting the ferrule, and a split sleeve surrounding the ferrule.Type: GrantFiled: September 25, 2013Date of Patent: November 8, 2016Assignees: CommScope Technologies LLC, CommScope Asia Holdings B.V., CommScope Connectivity Spain, S.L., CommScope Connectivity UK LimitedInventors: David Patrick Murray, Ton Bolhaar, Paul Schneider, Rafael Mateo, Luis Cabacho, Michael Wentworth, Steven J. Brandt, Marcellus P J Buijs, Alexander Dorrestein, Jan Willem Rietveld
-
Patent number: 9417399Abstract: A communications connection system includes a fiber optic adapter module configured to receive multiple fiber optic connectors. The fiber optic adapter module includes one or more media reading interfaces. Each media reading interface is configured to determine whether a fiber optic connector is received at one of the ports of the adapter module. Certain types of connectors store physical layer information. Certain types of media reading interfaces are configured to read the physical layer information from the connector if the connector stores such information.Type: GrantFiled: February 11, 2011Date of Patent: August 16, 2016Assignee: CommScope Technologies LLCInventors: John Anderson, Steven J. Brandt, Joseph C. Coffey, Bruce Ogren, Kamlesh G. Patel, Cyle D. Petersen, Michael D. Schroeder, John Stasny