Patents by Inventor Steven J. Catanach

Steven J. Catanach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110279240
    Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 17, 2011
    Applicant: TC LICENSE LTD.
    Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
  • Publication number: 20110279239
    Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 17, 2011
    Applicant: TC LICENSE LTD.
    Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
  • Patent number: 7548153
    Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: June 16, 2009
    Assignee: TC License Ltd.
    Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
  • Patent number: 5557273
    Abstract: An electrical system for converting a magnetic azimuth detector (MAD) signal into a corresponding digital signal. A conversion circuit receives a three-wire signal from the MAD; the three-wire signal is proportional to an angle .theta., which indicates the position of the MAD relative to magnetic north. The conversion circuit converts the three-wire signal into sin .theta. and cos .theta. signals. A digitization circuit converts the sin .theta. and cos .theta. signals into corresponding digital signals by first half-wave demodulating the analog sin .theta. and cos .theta. signals, then low-pass filtering the signals to extract the DC components, and finally digitizing the analog DC components.
    Type: Grant
    Filed: February 25, 1993
    Date of Patent: September 17, 1996
    Assignee: Honeywell Inc.
    Inventor: Steven J. Catanach