Patents by Inventor Steven J. Charlebois

Steven J. Charlebois has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10729531
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: August 4, 2020
    Assignee: Cook Medical Technologies LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A. M. Chuter, Blayne A. Roeder, Steven J. Charlebois
  • Patent number: 10265200
    Abstract: The present embodiments provide an endoluminal prosthesis, such as a stent-graft, having a relatively low delivery profile. In one embodiment, the prosthesis comprises a membrane, and at least one stent having contracted and expanded states, where the stent is coupled to the membrane and maintains patency in the expanded state. The prosthesis further may comprise selectively oriented axial and/or circumferential fibers arranged at predetermined locations along the length and circumference of the prosthesis. An increased population density of the circumferential and/or axial fibers may be provided in areas in which the at least one stent portion is attached to the membrane, or in areas of higher physiological loads imposed upon the endoluminal prosthesis.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: April 23, 2019
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: Steven J. Charlebois, William Kurt Dierking, Matthew S. Huser, Keith Milner, Jichao Sun
  • Publication number: 20180243077
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Application
    Filed: April 27, 2018
    Publication date: August 30, 2018
    Applicant: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A.M. Chuter, Blayne A. Roeder, Steven J. Charlebois
  • Patent number: 10058437
    Abstract: A method of forming a surface structure of a component of a medical devices includes forming a fatigue-resistant portion, which entails forming a first layer comprising a transition metal selected from the group consisting of Ta, Nb, Mo, V, Mn, Fe, Cr, Co, Ni, Cu, and Si on at least a portion of a surface of the component, where the surface comprises a nickel-titanium alloy, and alloying the transition metal of the first layer with the nickel-titanium alloy of the surface. The method further includes forming a rough outer surface of the fatigue-resistant portion, where the rough outer surface is adapted for adhesion of a material thereto.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: August 28, 2018
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: Steven J. Charlebois, W. Kurt Dierking, David E. Orr
  • Patent number: 9993331
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: June 12, 2018
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A. M. Chuter, Blayne A. Roeder, Steven J. Charlebois
  • Patent number: 9950106
    Abstract: The invention relates to an antimicrobial barrier device and methods of manufacture. The antimicrobial barrier comprises one or more antimicrobial drugs that inhibit biofilm formation and bacterial and/or fungal growth. The antimicrobial barrier is suited for use with insertable devices (e.g., catheters) to reduce the incidence of infection at and around the insertion site.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: April 24, 2018
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: Andrew P. Isch, Steven J. Charlebois
  • Patent number: 9839538
    Abstract: A method of making a stent-graft is provided. The method includes mounting a stent on a mandrel so that the stent is stretched when it is on the mandrel. A graft layer is then adhered to the stent while it is mounted on the mandrel. When the stent-graft is removed from the mandrel, the stent contracts and the graft layer becomes partially wrinkled when the stent is in its expanded relaxed state.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: December 12, 2017
    Assignee: Cook Medical Technologies LLC
    Inventors: David D Grewe, Keith R Milner, Blayne A Roeder, Steven J Charlebois
  • Patent number: 9788933
    Abstract: An aortic stent-graft may include a tubular graft extending from a proximal end to a distal end, the graft comprising a proximal sealing portion and an intermediate portion, wherein a proximal end of the intermediate portion abuts the distal end of the proximal sealing portion. At least one sealing stent may be attached to the proximal sealing portion. A first fenestration window is disposed in the intermediate portion. The first fenestration window has a length determined by the equation L=1.23*D?24 millimeters, where L is the length of the first fenestration window. D is between about 24 millimeters and 45 millimeters.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: October 17, 2017
    Assignee: Cook Medical Technologies LLC
    Inventors: Jichao Sun, Jarin Kratzberg, David D. Grewe, Kenneth Haselby, Matthew S. Huser, Steven J. Charlebois, William Kurt Dierking, Alan R. Leewood, Brandt M. Davis, Blayne A. Roeder
  • Patent number: 9757263
    Abstract: A stent graft (40) for treating Type-A dissections in the ascending aorta (22) is provided with a plurality of diameter-reducing suture loops (56-60) operable to constrain the stent graft during deployment thereof in a patient's aorta. The diameter-reducing loops (56-60) allow the stent graft (40) to be partially deployed, in such a manner that its location can be precisely adjusted in the patient's lumen. In this manner, the stent graft can be placed just by the coronary arteries (26, 28) with confidence that these will not be blocked. The stent graft (40) is also provided with proximal and distal bare stents (44,52) for anchoring purposes.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: September 12, 2017
    Assignee: Cook Medical Technologies LLC
    Inventors: Blayne A. Roeder, Jarin Kratzberg, William K. Dierking, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Erik E. Rasmussen, Bent Oehlenschlaeger, Kim Møgelvang Jensen
  • Publication number: 20170252146
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Application
    Filed: May 24, 2017
    Publication date: September 7, 2017
    Applicant: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A.M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew S. Huser
  • Patent number: 9717611
    Abstract: A stent graft (40) for treating Type-A dissections in the ascending aorta (22) is provided with a plurality of diameter reducing suture loops (56-60) operable to constrain the stent graft during deployment thereof in a patient's aorta. The diameter reducing loops (56-60) allow the stent graft (40) to be partially deployed, in such a manner that its location can be precisely adjusted in the patient's lumen. In this manner, the stent graft can be placed just by the coronary arteries (26, 28) with confidence that these will not be blocked. The stent graft (40) is also provided with proximal and distal bare stents (44,52) for anchoring purposes.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: August 1, 2017
    Assignee: Cook Medical Technologies LLC
    Inventors: Kim Moegelvang Jensen, Bent Oehlenschlaeger, Erik Rasmussen, Steven J. Charlebois, William K. Dierking, Jarin Kratzberg, Blayne A. Roeder, Richard A. Swift, Sharath Gopalakrishnamurthy
  • Patent number: 9687336
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: June 27, 2017
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A. M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew S. Huser
  • Publication number: 20170079818
    Abstract: An endoluminal medical device includes a cannula, the cannula having a proximal end and a distal end; an abrasion member having a series of struts interconnected by a series of bent segments forming a plurality of prongs attached to the cannula, the abrasion member having a first section and a second section; where the prongs of the first section of the abrasion member extend radially outward from the cannula.
    Type: Application
    Filed: December 2, 2016
    Publication date: March 23, 2017
    Inventors: Steven L. PENDLETON, Steven J. CHARLEBOIS
  • Patent number: 9539127
    Abstract: An endoluminal medical device includes a cannula, the cannula having a proximal end and a distal end; an abrasion member having a series of struts interconnected by a series of bent segments forming a plurality of prongs attached to the cannula, the abrasion member having a first section and a second section; where the prongs of the first section of the abrasion member extend radially outward from the cannula.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: January 10, 2017
    Assignee: Cook Medical Technologies LLC
    Inventors: Steven L. Pendleton, Steven J. Charlebois
  • Publication number: 20160262869
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Application
    Filed: May 20, 2016
    Publication date: September 15, 2016
    Applicant: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A.M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew Huser, Jarin Kratzberg, Erik E. Rasmussen, Bent Oehlenschlaeger, Kim Moegelvang Jensen
  • Patent number: 9345595
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: May 24, 2016
    Assignee: Cook Medical Technologies LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A. M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew Huser, Jarin Kratzberg, Erik E. Rasmussen, Bent Oehlenschlaeger, Kim Møgelvang Jensen
  • Patent number: 9289302
    Abstract: Various embodiments of mosaicplasty constructs and methods for implanting the constructs into anatomical structures. The mosaicplasty constructs may be formed from artificial materials and may include a hard articulating portion and a relatively softer elastic, support portion. The mosaicplasty constructs may include bone ingrowth materials to facilitate ingrowth of bone and other tissues into the construct. The mosaicplasty constructs may also be at least partially formed of hydrogel materials.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: March 22, 2016
    Assignee: Zimmer, Inc.
    Inventors: Brian H. Thomas, Steven J. Charlebois, Donald Yakimicki, James Mason, Stephen H. Spiegelberg, Gavin Braithwaite, Gareth McKinley, Orhun Muratoglu
  • Publication number: 20160074183
    Abstract: Various stents and stent-graft systems for treatment of medical conditions are disclosed. In one embodiment, an exemplary stent-graft system may be used for endovascular treatment of a thoracic aortic aneurysm. The stent-graft system may comprise proximal and distal components, each comprising a graft having proximal and distal ends, where upon deployment the proximal and distal components at least partially overlap with one another to provide a fluid passageway therebetween. The proximal component may comprise a proximal stent having a plurality of proximal and distal apices connected by a plurality of generally straight portions, where a radius of curvature of at least one of the proximal apices may be greater than the radius of curvature of at least one of the distal apices. The distal component may comprise a proximal z-stent coupled to the graft, where the proximal end of the graft comprises at least scallop formed therein that generally follows the shape of the proximal z-stent.
    Type: Application
    Filed: November 25, 2015
    Publication date: March 17, 2016
    Applicant: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A.M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew S. Huser
  • Publication number: 20160022412
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Application
    Filed: October 6, 2015
    Publication date: January 28, 2016
    Applicant: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A.M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew S. Huser
  • Publication number: 20160015535
    Abstract: A method of forming a surface structure of a component of a medical devices includes forming a fatigue-resistant portion, which entails forming a first layer comprising a transition metal selected from the group consisting of Ta, Nb, Mo, V, Mn, Fe, Cr, Co, Ni, Cu, and Si on at least a portion of a surface of the component, where the surface comprises a nickel-titanium alloy, and alloying the transition metal of the first layer with the nickel-titanium alloy of the surface. The method further includes forming a rough outer surface of the fatigue-resistant portion, where the rough outer surface is adapted for adhesion of a material thereto.
    Type: Application
    Filed: September 29, 2015
    Publication date: January 21, 2016
    Inventors: Steven J. Charlebois, W. Kurt Dierking, David E. Orr