Patents by Inventor Steven J. Healy

Steven J. Healy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240009356
    Abstract: A stent scaffold combined with amniotic tissue provides for a biocompatible stent that has improved biocompatibility and hemocompatibility. The amnion tissue can be variously modified or unmodified form of amnion tissue such as non-cryo amnion tissue, solubilized amnion tissue, amnion tissue fabric, chemically modified amnion tissue, amnion tissue treated with radiation, amnion tissue treated with heat, or a combination thereof. Materials such as polymer, placental tissue, pericardium tissue, small intestine submucosa can be used in combination with the amnion tissue. The amnion tissue can be attached to the inside, the outside, both inside and outside, or complete encapsulation of the stent scaffold. In some embodiments, at least part of the covering or lining comprises a plurality of layers of amnion tissue. The method of making the biocompatible stent and its delivery and deployment are also discussed.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 11, 2024
    Inventors: John Schorgl, Paul Thompson, Steven J. Healy, Robert Thatcher
  • Publication number: 20160136334
    Abstract: A stent scaffold combined with amniotic tissue provides for a biocompatible stent that has improved biocompatibility and hemocompatibility. The amnion tissue can be variously modified or unmodified form of amnion tissue such as non-cryo amnion tissue, solubilized amnion tissue, amnion tissue fabric, chemically modified amnion tissue, amnion tissue treated with radiation, amnion tissue treated with heat, or a combination thereof. Materials such as polymer, placental tissue, pericardium tissue, small intestine submucosa can be used in combination with the amnion tissue. The amnion tissue can be attached to the inside, the outside, both inside and outside, or complete encapsulation of the stent scaffold. In some embodiments, at least part of the covering or lining comprises a plurality of layers of amnion tissue. The method of making the biocompatible stent and its delivery and deployment are also discussed.
    Type: Application
    Filed: November 13, 2015
    Publication date: May 19, 2016
    Inventors: John Schorgl, Paul Thompson, Steven J. Healy, Robert Thatcher
  • Patent number: 9205177
    Abstract: A stent scaffold combined with amniotic tissue provides for a biocompatible stent that has improved biocompatibility and hemocompatibility. The amnion tissue can be variously modified or unmodified form of amnion tissue such as non-cryo amnion tissue, solubilized amnion tissue, amnion tissue fabric, chemically modified amnion tissue, amnion tissue treated with radiation, amnion tissue treated with heat, or a combination thereof. Materials such as polymer, placental tissue, pericardium tissue, small intestine submucosa can be used in combination with the amnion tissue. The amnion tissue can be attached to the inside, the outside, both inside and outside, or complete encapsulation of the stent scaffold. In some embodiments, at least part of the covering or lining comprises a plurality of layers of amnion tissue. The method of making the biocompatible stent and its delivery and deployment are also discussed.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: December 8, 2015
    Assignee: Peytant Solutions, Inc.
    Inventors: John Schorgl, Paul Thompson, Steven J. Healy, Robert Thatcher
  • Publication number: 20100228335
    Abstract: A stent scaffold combined with amniotic tissue provides for a biocompatible stent that has improved biocompatibility and hemocompatibility. The amnion tissue can be variously modified or unmodified form of amnion tissue such as non-cryo amnion tissue, solubilized amnion tissue, amnion tissue fabric, chemically modified amnion tissue, amnion tissue treated with radiation, amnion tissue treated with heat, or a combination thereof. Materials such as polymer, placental tissue, pericardium tissue, small intestine submucosa can be used in combination with the amnion tissue. The amnion tissue can be attached to the inside, the outside, both inside and outside, or complete encapsulation of the stent scaffold. In some embodiments, at least part of the covering or lining comprises a plurality of layers of amnion tissue. The method of making the biocompatible stent and its delivery and deployment are also discussed.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 9, 2010
    Inventors: John Schorgl, Paul Thompson, Steven J. Healy, Robert Thatcher
  • Patent number: 6755855
    Abstract: A stent deployment device includes a flexible, elongate interior catheter and a retaining structure cooperating with the catheter to support a stent along a distal end support region of the catheter. The stent is supported in a reduced radius delivery state to facilitate delivery to a treatment site in a body lumen, by advancing the device over a previously positioned guidewire. An opening at the distal end of the device receives the guidewire into a guidewire lumen of the interior catheter. A second opening through the catheter wall just proximally of the support region allows passage of the guidewire to the exterior of the catheter, whereby the guidewire is contained within the device only along the distal end region. The retaining structure can include an exterior catheter surrounding the interior catheter and stent, and moveable axially relative to the interior catheter.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: June 29, 2004
    Assignee: Boston Scientific SciMed, Inc.
    Inventors: Matthew T. Yurek, Steven J. Healy
  • Patent number: 6613087
    Abstract: A prosthetic stentless aortic tissue valve includes a substantially annular valve body having a leaflet carried therein for occluding blood flow therethrough. A root extends generally coaxially from the valve body. Visual marking are provided on the root and act as a sculpting guide for a surgeon during implantation of the prosthetic heart valve to sculpt portions of sinus areas of the root.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: September 2, 2003
    Assignee: St. Jude Medical, Inc.
    Inventors: Steven J. Healy, Richard F. Schroeder
  • Publication number: 20020099405
    Abstract: A stent deployment device includes a flexible, elongate interior catheter and a retaining structure cooperating with the catheter to support a stent along a distal end support region of the catheter. The stent is supported in a reduced radius delivery state to facilitate delivery to a treatment site in a body lumen, by advancing the device over a previously positioned guidewire. An opening at the distal end of the device receives the guidewire into a guidewire lumen of the interior catheter. A second opening through the catheter wall just proximally of the support region allows passage of the guidewire to the exterior of the catheter, whereby the guidewire is contained within the device only along the distal end region. The retaining means can include an exterior catheter surrounding the interior catheter and stent, and moveable axially relative to the interior catheter.
    Type: Application
    Filed: March 19, 2002
    Publication date: July 25, 2002
    Inventors: Matthew T. Yurek, Steven J. Healy
  • Patent number: 6380457
    Abstract: A stent deployment device includes a flexible, elongate interior catheter and a retaining structure cooperating with the catheter to support a stent along a distal end support region of the catheter. The stent is supported in a reduced radius delivery state to facilitate delivery to a treatment site in a body lumen, by advancing the device over a previously positioned guidewire. An opening at the distal end of the device receives the guidewire into a guidewire lumen of the interior catheter. A second opening through the catheter wall just proximally of the support region allows passage of the guidewire to the exterior of the catheter, whereby the guidewire is contained within the device only along the distal end region. The retaining structure can include an exterior catheter surrounding the interior catheter and stent, and moveable axially relative to the interior catheter.
    Type: Grant
    Filed: October 27, 1997
    Date of Patent: April 30, 2002
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Matthew T. Yurek, Steven J. Healy
  • Patent number: 6074419
    Abstract: A prosthetic stentless aortic tissue valve includes a substantially annular valve body having a leaflet carried therein for occluding blood flow therethrough. A root extends generally coaxially from the valve body. Visual marking are provided on the root and act as a sculpting guide for a surgeon during implantation of the prosthetic heart valve to sculpt portions of sinus areas of the root.
    Type: Grant
    Filed: December 31, 1996
    Date of Patent: June 13, 2000
    Assignee: St. Jude Medical, Inc.
    Inventors: Steven J. Healy, Richard F. Schroeder
  • Patent number: 5690644
    Abstract: A stent deployment device includes a flexible, elongate interior catheter and a retaining structure cooperating with the catheter to support a stent along a distal end support region of the catheter. The stent is supported in a reduced radius delivery state to facilitate delivery to a treatment site in a body lumen, by advancing the device over a previously positioned guidewire. An opening at the distal end of the device receives the guidewire into a guidewire lumen of the interior catheter. A second opening through the catheter wall just proximally of the support region allows passage of the guidewire to the exterior of the catheter, whereby the guidewire is contained within the device only along the distal end region. A retainer for the stent can include an exterior catheter surrounding the interior catheter and stent, and moveable axially relative to the interior catheter.
    Type: Grant
    Filed: February 20, 1996
    Date of Patent: November 25, 1997
    Assignee: Schneider (USA) Inc.
    Inventors: Matthew T. Yurek, Steven J. Healy