Patents by Inventor Steven J. Howard

Steven J. Howard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8208364
    Abstract: A MIMO system supports multiple spatial multiplexing modes for improved performance and greater flexibility. These modes may include (1) a single-user steered mode that transmits multiple data streams on orthogonal spatial channels to a single receiver, (2) a single-user non-steered mode that transmits multiple data streams from multiple antennas to a single receiver without spatial processing at a transmitter, (3) a multi-user steered mode that transmits multiple data streams simultaneously to multiple receivers with spatial processing at a transmitter, and (4) a multi-user non-steered mode that transmits multiple data streams from multiple antennas (co-located or non co-located) without spatial processing at the transmitter(s) to receiver(s) having multiple antennas. For each set of user terminal(s) selected for data transmission on the downlink and/or uplink, a spatial multiplexing mode is selected for the user terminal set from among the multiple spatial multiplexing modes supported by the system.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: June 26, 2012
    Assignee: Qualcomm Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8203978
    Abstract: A user terminal supports multiple spatial multiplexing (SM) modes such as a steered mode and a non-steered mode. For data transmission, multiple data streams are coded and modulated in accordance with their selected rates to obtain multiple data symbol streams. These streams are then spatially processed in accordance with a selected SM mode (e.g., with a matrix of steering vectors for the steered mode and with the identity matrix for the non-steered mode) to obtain multiple transmit symbol streams for transmission from multiple antennas. For data reception, multiple received symbol streams are spatially processed in accordance with the selected SM mode (e.g., with a matrix of eigenvectors for the steered mode and with a spatial filter matrix for the non-steered mode) to obtain multiple recovered data symbol streams. These streams are demodulated and decoded in accordance with their selected rates to obtain multiple decoded data streams.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: June 19, 2012
    Assignee: Qualcomm Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8204149
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: June 19, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Publication number: 20120147984
    Abstract: Methods and apparatus for enhancing estimations of channel response in a wireless communication system are discussed. As an example, a method can comprise: selecting a selected channel from among one or more channels in the communication system; determining, for the selected channel, an initial channel estimate comprising a sequence of frequency-domain samples; determining a phase slope of the initial channel estimate; generating a flat-phase channel estimate by removing the phase slope from the initial channel estimate; and generating an enhanced channel estimate for the selected channel by applying a smoothing function to the flat-phase channel estimate. Other aspects, embodiments, and features are also claimed and described.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 14, 2012
    Applicant: QUALCOMM INCORPORATED
    Inventors: Bjorn Bjerke, Steven J. Howard
  • Patent number: 8199842
    Abstract: Techniques for processing a data transmission at the transmitter and receiver. In an aspect, a time-domain implementation is provided which uses frequency-domain singular value decomposition and “water-pouring” results to derive time-domain pulse-shaping and beam-steering solutions at the transmitter and receiver. The singular value decomposition is performed at the transmitter to determine eigen-modes (i.e., spatial subchannels) of the MIMO channel and to derive a first set of steering vectors used to “precondition” modulation symbols. The singular value decomposition is also performed at the receiver to derive a second set of steering vectors used to precondition the received signals such that orthogonal symbol streams are recovered at the receiver, which can simplify the receiver processing. Water-pouring analysis is used to more optimally allocate the total available transmit power to the eigen-modes, which then determines the data rate and the coding and modulation scheme to be used for each eigen-mode.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: June 12, 2012
    Assignee: Qualcomm Incorporated
    Inventors: John W. Ketchum, Mark Wallace, Steven J. Howard, Jay Rod Walton
  • Publication number: 20120140664
    Abstract: Techniques for facilitating random access in wireless multiple-access communication systems are described. A random access channel (RACH) is defined to comprise a “fast” RACH (F-RACH) and a “slow” RACH (S-RACH). The F-RACH and S-RACH can efficiently support user terminals in different operating states and employ different designs. The F-RACH can be used to quickly access the system, and the S-RACH is more robust and can support user terminals in various operating states and conditions. The F-RACH may be used by user terminals that have registered with the system and can compensate for their round trip delays (RTDs) by properly advancing their transmit timing. The S-RACH may be used by user terminals that may or may not have registered with the system, and may or may not be able to compensate for their RTDs. Other aspects, embodiments, and features are also claimed and described.
    Type: Application
    Filed: January 19, 2012
    Publication date: June 7, 2012
    Applicant: QUALCOMM INCORPORATED
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8169944
    Abstract: Techniques for facilitating random access in wireless multiple-access communication systems. A random access channel (RACH) is defined to comprise a “fast” RACH (F-RACH) and a “slow” RACH (S-RACH). The F-RACH and S-RACH can efficiently support user terminals in different operating states and employ different designs. The F-RACH can be used to quickly access the system, and the S-RACH is more robust and can support user terminals in various operating states and conditions. The F-RACH may be used by user terminals that have registered with the system and can compensate for their round trip delays (RTDs) by properly advancing their transmit timing. The S-RACH may be used by user terminals that may or may not have registered with the system, and may or may not be able to compensate for their RTDs. The user terminals may use the F-RACH or S-RACH, or both, to gain access to the system.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: May 1, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8169889
    Abstract: A multi-antenna transmitting entity transmits data to a single- or multi-antenna receiving entity using (1) a steered mode to direct the data transmission toward the receiving entity or (2) a pseudo-random transmit steering (PRTS) mode to randomize the effective channels observed by the data transmission across the subbands. The PRTS mode may be used to achieve transmit diversity or spatial spreading. For transmit diversity, the transmitting entity uses different pseudo-random steering vectors across the subbands but the same steering vector across a packet for each subband. The receiving entity does not need to have knowledge of the pseudo-random steering vectors or perform any special processing. For spatial spreading, the transmitting entity uses different pseudo-random steering vectors across the subbands and different steering vectors across the packet for each subband. Only the transmitting and receiving entities know the steering vectors used for data transmission.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: May 1, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard, Sanjiv Nanda
  • Patent number: 8160183
    Abstract: For eigenmode transmission with minimum mean square error (MMSE) receiver spatial processing, a transmitter performs spatial processing on NS data symbol streams with steering vectors to transmit the streams on NS spatial channels of a MIMO channel. The steering vectors are estimates of transmitter steering vectors required to orthogonalize the spatial channels. A receiver derives a spatial filter based on an MMSE criterion and with an estimate of the MIMO channel response and the steering vectors. The receiver (1) obtains NR received symbol streams from NR receive antennas, (2) performs spatial processing on the received symbol streams with the spatial filter to obtain NS filtered symbol streams, (3) performs signal scaling on the filtered symbol streams with a scaling matrix to obtain NS recovered symbol streams, and (4) processes the NS recovered symbol streams to obtain NS decoded data streams for the NS data streams sent by the transmitter.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: April 17, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: John W. Ketchum, Mark S. Wallace, J. Rodney Walton, Steven J. Howard
  • Patent number: 8134976
    Abstract: Techniques to calibrate the downlink and uplink channels to account for differences in the frequency responses of the transmit and receive chains at an access point and a user terminal. In one embodiment, pilots are transmitted on the downlink and uplink channels and used to derive estimates of the downlink and uplink channel responses, respectively. Two sets of correction factors are then determined based on the estimates of the downlink and uplink channel responses. A calibrated downlink channel is formed by using a first set of correction factors for the downlink channel, and a calibrated uplink channel is formed by using a second set of correction factors for the uplink channel. The first and second sets of correction factors may be determined using a matrix-ratio computation or a minimum mean square error (MMSE) computation. The calibration may be performed in real-time based on over-the-air transmission.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: March 13, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Mark S. Wallace, John W. Ketchum, J. Rodney Walton, Steven J. Howard
  • Publication number: 20120015608
    Abstract: A wireless repeater with an antenna array determines the antenna weights to modify the spatial selectivity of the antenna array to reduce interference and improve the quality of signal reception. The antenna weights are determined using an error minimizing algorithm to minimize the error between a desired receive signal and a reference signal or an adaptive metric optimization algorithm to calculate adaptively antenna weights to minimize the signal-to-noise ratio of a desired receive signal.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 19, 2012
    Applicant: QUALCOMM Incorporated
    Inventors: James Arthur Proctor, JR., Kenneth M. Gainey, Steven J. Howard, Hakan Inanoglu
  • Publication number: 20120015603
    Abstract: An echo cancellation wireless repeater with first and second antenna arrays having vertical and horizontal feed antenna elements selects a combination of antenna elements for reception and transmission to reduce interference and improve the quality of signal reception. In one embodiment, the antenna elements are switchably connected to transceiver circuits and a combination of antenna elements is selected based on the best desired performance result. In another embodiment, the antenna elements are each connected to its own transceiver circuit and the echo cancellation repeater performs beamforming in baseband to select a combination of antenna elements.
    Type: Application
    Filed: June 7, 2011
    Publication date: January 19, 2012
    Applicant: QUALCOMM Incorporated
    Inventors: James Arthur Proctor, JR., Kenneth M. Gainey, Steven J. Howard, Hakan Inanoglu
  • Publication number: 20110317671
    Abstract: In one aspect of a multiple-access OFDM-CDMA system, data spreading is performed in the frequency domain by spreading each data stream with a respective spreading code selected from a set of available spreading codes. To support multiple access, system resources may be allocated and de-allocated to users (e.g., spreading codes may be assigned to users as needed, and transmit power may be allocated to users). Variable rate data for each user may be supported via a combination of spreading adjustment and transmit power scaling. Interference control techniques are also provided to improve system performance via power control of the downlink and/or uplink transmissions to achieve the desired level of performance while minimizing interference. A pilot may be transmitted by each transmitter unit to assist the receiver units perform acquisition, timing synchronization, carrier recovery, handoff, channel estimation, coherent data demodulation, and so on.
    Type: Application
    Filed: September 8, 2011
    Publication date: December 29, 2011
    Applicant: QUALCOMM Incorporated
    Inventors: Jay R. Walton, John W. Ketchum, Steven J. Howard, Mark Wallace
  • Patent number: 8085873
    Abstract: Disclosed herein are methods and apparatus for enhancing the estimation of channel response in a wireless communication system.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: December 27, 2011
    Assignee: QUALCOMM, Incorporated
    Inventors: Bjorn Bjerke, Steven J. Howard
  • Patent number: 8081728
    Abstract: A method of phase correction at a wireless device includes: estimating a phase slope for an OFDM symbol in a data portion of a packet based on an elapsed time from the start of the packet; measuring a residual phase slope from tracking pilots for the OFDM symbol in the data portion of the packet; and adjusting a phase correction based upon the phase slope and the residual phase slope. Apparatus in a wireless device performs the method and machine-readable media carry instructions for carrying out the method.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: December 20, 2011
    Assignee: QUALCOMM, Incorporated
    Inventors: Mark S. Wallace, Peter Monsen, Irena Medvedev, Steven J. Howard, Jay Rodney Walton
  • Publication number: 20110261899
    Abstract: Techniques to schedule downlink data transmission to a number of terminals in a wireless communication system. In one method, one or more sets of terminals are formed for possible data transmission, with each set including a unique combination of one or more terminals and corresponding to a hypothesis to be evaluated. One or more sub-hypotheses may further be formed for each hypothesis, with each sub-hypothesis corresponding to specific assignments of a number of transmit antennas to the one or more terminals in the hypothesis. The performance of each sub-hypothesis is then evaluated, and one of the evaluated sub-hypotheses is selected based on their performance. The terminal(s) in the selected sub-hypothesis are then scheduled for data transmission, and data is thereafter coded, modulated, and transmitted to each scheduled terminal from one or more transmit antennas assigned to the terminal.
    Type: Application
    Filed: February 18, 2011
    Publication date: October 27, 2011
    Applicant: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, Mark S. Wallace, Steven J. Howard
  • Patent number: 8040965
    Abstract: Techniques to process data for transmission over a set of transmission channels selected from among all available transmission channels. In an aspect, the data processing includes coding data based on a common coding and modulation scheme to provide modulation symbols and pre-weighting the modulation symbols for each selected channel based on the channel's characteristics. The pre-weighting may be achieved by “inverting” the selected channels so that the received SNRs are approximately similar for all selected channels. With selective channel inversion, only channels having SNRs at or above a particular threshold are selected, “bad” channels are not used, and the total available transmit power is distributed across only “good” channels. Improved performance is achieved due to the combined benefits of using only the NS best channels and matching the received SNR of each selected channel to the SNR required by the selected coding and modulation scheme.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: October 18, 2011
    Assignee: QUALCOMM, Incorporated
    Inventors: John W. Ketchum, Steven J. Howard, Jay Rod Walton, Mark S. Wallace, Fuyun Ling
  • Publication number: 20110235744
    Abstract: Pilots suitable for use in MIMO systems and capable of supporting various functions are described. The various types of pilot include—a beacon pilot, a MIMO pilot, a steered reference or steered pilot, and a carrier pilot. The beacon pilot is transmitted from all transmit antennas and may be used for timing and frequency acquisition. The MIMO pilot is transmitted from all transmit antennas but is covered with different orthogonal codes assigned to the transmit antennas. The MIMO pilot may be used for channel estimation. The steered reference is transmitted on specific eigenmodes of a MIMO channel and is user terminal specific. The steered reference may be used for channel estimation. The carrier pilot may be transmitted on designated subbands/antennas and may be used for phase tracking of a carrier signal. Various pilot transmission schemes may be devised based on different combinations of these various types of pilot.
    Type: Application
    Filed: June 8, 2011
    Publication date: September 29, 2011
    Applicant: QUALCOMM Incorporated
    Inventors: John W. Ketchum, Mark S. Wallace, J. Rodney Walton, Steven J. Howard
  • Patent number: 7991065
    Abstract: Techniques for efficiently computing spatial filter matrices are described. The channel response matrices for a MIMO channel may be highly correlated if the channel is relatively static over a range of transmission spans. In this case, an initial spatial filter matrix may be derived based on one channel response matrix, and a spatial filter matrix for each transmission span may be computed based on the initial spatial filter matrix and a steering matrix used for that transmission span. The channel response matrices may be partially correlated if the MIMO channel is not static but does not change abruptly. In this case, a spatial filter matrix may be derived for one transmission span l and used to derive an initial spatial filter matrix for another transmission span m. A spatial filter matrix for transmission span m may be computed based on the initial spatial filter matrix, e.g., using an iterative procedure.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: August 2, 2011
    Assignee: QUALCOMM, Incorporated
    Inventors: Mark S. Wallace, Jay Rodney Walton, Steven J. Howard
  • Patent number: 7986742
    Abstract: Pilots suitable for use in MIMO systems and capable of supporting various functions are described. The various types of pilot include—a beacon pilot, a MIMO pilot, a steered reference or steered pilot, and a carrier pilot. The beacon pilot is transmitted from all transmit antennas and may be used for timing and frequency acquisition. The MIMO pilot is transmitted from all transmit antennas but is covered with different orthogonal codes assigned to the transmit antennas. The MIMO pilot may be used for channel estimation. The steered reference is transmitted on specific eigenmodes of a MIMO channel and is user terminal specific. The steered reference may be used for channel estimation. The carrier pilot may be transmitted on designated subbands/antennas and may be used for phase tracking of a carrier signal. Various pilot transmission schemes may be devised based on different combinations of these various types of pilot.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: July 26, 2011
    Assignee: QUALCOMM Incorporated
    Inventors: John W. Ketchum, Mark S. Wallace, J. Rodney Walton, Steven J. Howard