Patents by Inventor Steven J. Howard

Steven J. Howard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040085892
    Abstract: In one aspect of a multiple-access OFDM-CDMA system, the data spreading is performed in the frequency domain by spreading each data stream with a respective spreading code selected from a set of available spreading codes. To support multiple access, system resources may be allocated and de-allocated to users (e.g., spreading codes may be assigned to users as needed, and transmit power may be allocated to users). Variable rate data for each user may be supported via a combination of spreading adjustment and transmit power scaling. Interference control techniques are also provided to improve system performance via power control of the downlink and/or uplink transmissions to achieve the desired level of performance while minimizing interference. A pilot may be transmitted by each transmitter unit to assist the receiver units perform acquisition, timing synchronization, carrier recovery, handoff, channel estimation, coherent data demodulation, and so on.
    Type: Application
    Filed: October 29, 2003
    Publication date: May 6, 2004
    Inventors: Jay R. Walton, John W. Ketchum, Steven J. Howard, Mark Wallace
  • Publication number: 20040085939
    Abstract: Techniques to calibrate the downlink and uplink channels to account for differences in the frequency responses of the transmit and receive chains at an access point and a user terminal. In one embodiment, pilots are transmitted on the downlink and uplink channels and used to derive estimates of the downlink and uplink channel responses, respectively. Two sets of correction factors are then determined based on the estimates of the downlink and uplink channel responses. A calibrated downlink channel is formed by using a first set of correction factors for the downlink channel, and a calibrated uplink channel is formed by using a second set of correction factors for the uplink channel. The first and second sets of correction factors may be determined using a matrix-ratio computation or a minimum mean square error (MMSE) computation. The calibration may be performed in real-time based on over-the-air transmission.
    Type: Application
    Filed: October 23, 2003
    Publication date: May 6, 2004
    Inventors: Mark S. Wallace, John W. Ketchum, J. Rodney Walton, Steven J. Howard
  • Publication number: 20040087324
    Abstract: Channel estimation and spatial processing for a TDD MIMO system. Calibration may be performed to account for differences in the responses of transmit/receive chains at the access point and user terminal. During normal operation, a MIMO pilot is transmitted on a first link and used to derive an estimate of the first link channel response, which is decomposed to obtain a diagonal matrix of singular values and a first unitary matrix containing both left eigenvectors of the first link and right eigenvectors of a second link. A steered reference is transmitted on the second link using the eigenvectors in the first unitary matrix, and is processed to obtain the diagonal matrix and a second unitary matrix containing both left eigenvectors of the second link and right eigenvectors of the first link. Each unitary matrix may be used to perform spatial processing for data transmission/reception via both links.
    Type: Application
    Filed: October 23, 2003
    Publication date: May 6, 2004
    Inventors: John W. Ketchum, Mark S. Wallace, J. Rodney Walton, Steven J. Howard
  • Publication number: 20040081131
    Abstract: Techniques to use OFDM symbols of different sizes to achieve greater efficiency for OFDM systems. The system traffic may be arranged into different categories (e.g., control data, user data, and pilot data). For each category, one or more OFDM symbols of the proper sizes may be selected for use based on the expected payload size for the traffic in that category. For example, control data may be transmitted using OFDM symbols of a first size, user data may be transmitted using OFDM symbols of the first size and a second size, and pilot data may be transmitted using OFDM symbols of a third size or the first size. In one exemplary design, a small OFDM symbol is utilized for pilot and for transport channels used to send control data, and a large OFDM symbol and the small OFDM symbol are utilized for transport channels used to send user data.
    Type: Application
    Filed: February 25, 2003
    Publication date: April 29, 2004
    Inventors: Jay Rod Walton, John W. Ketchum, Mark Wallace, Steven J. Howard
  • Publication number: 20040081073
    Abstract: For transmit diversity in a multi-antenna OFDM system, a transmitter encodes, interleaves, and symbol maps traffic data to obtain data symbols. The transmitter processes each pair of data symbols to obtain two pairs of transmit symbols for transmission from a pair of antennas either (1) in two OFDM symbol periods for space-time transmit diversity or (2) on two subbands for space-frequency transmit diversity. NT·(NT−1)/2 different antenna pairs are used for data transmission, with different antenna pairs being used for adjacent subbands, where NT is the number of antennas. The system may support multiple OFDM symbol sizes. The same coding, interleaving, and modulation schemes are used for different OFDM symbol sizes to simplify the transmitter and receiver processing. The transmitter performs OFDM modulation on the transmit symbol stream for each antenna in accordance with the selected OFDM symbol size. The receiver performs the complementary processing.
    Type: Application
    Filed: September 29, 2003
    Publication date: April 29, 2004
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Publication number: 20040082356
    Abstract: A multiple-access MIMO WLAN system that employs MIMO, OFDM, and TDD. The system (1) uses a channel structure with a number of configurable transport channels, (2) supports multiple rates and transmission modes, which are configurable based on channel conditions and user terminal capabilities, (3) employs a pilot structure with several types of pilot (e.g., beacon, MIMO, steered reference, and carrier pilots) for different functions, (4) implements rate, timing, and power control loops for proper system operation, and (5) employs random access for system access by the user terminals, fast acknowledgment, and quick resource assignments. Calibration may be performed to account for differences in the frequency responses of transmit/receive chains at the access point and user terminals. The spatial processing may then be simplified by taking advantage of the reciprocal nature of the downlink and uplink and the calibration.
    Type: Application
    Filed: October 23, 2003
    Publication date: April 29, 2004
    Inventors: J. Rodney Walton, Mark S. Wallace, John W. Ketchum, Steven J. Howard
  • Publication number: 20040042439
    Abstract: Techniques to perform beam-steering and beam-forming to transmit data on a single eigenmode in a wideband multiple-input channel. In one method, a steering vector is obtained for each of a number of subbands. Depending on how the steering vectors are defined, beam-steering or beam-forming can be achieved for each subband. The total transmit power is allocated to the subbands based on a particular power allocation scheme (e.g., full channel inversion, selective channel inversion, water-filling, or uniform). A scaling value is then obtained for each subband based on its allocated transmit power. Data to be transmitted is coded and modulated to provide modulation symbols. The modulation symbols to be transmitted on each subband are scaled with the subband's scaling value and further preconditioned with the subband's steering vector. A stream of preconditioned symbols is then formed for each transmit antenna.
    Type: Application
    Filed: August 27, 2002
    Publication date: March 4, 2004
    Inventors: Murali Paravath Menon, John W. Ketchum, Mark Wallace, Jay Rod Walton, Steven J. Howard
  • Patent number: 6662024
    Abstract: Techniques to schedule downlink data transmission to a number of terminals in a wireless communication system. In one method, one or more sets of terminals are formed for possible data transmission, with each set including a unique combination of one more terminals and corresponding to a hypothesis to be evaluated. One or more sub-hypotheses may further be formed for each hypothesis, with each sub-hypothesis corresponding to specific assignments of a number of transmit antennas to the one or more terminals in the hypothesis. The performance of each sub-hypothesis is then evaluated, and one of the evaluated sub-hypotheses is selected based on their performance. The terminal(s) in the selected sub-hypothesis are then scheduled for data transmission, and data is thereafter coded, modulated, and transmitted to each scheduled terminal from one or more transmit antennas assigned to the terminal.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: December 9, 2003
    Assignee: Qualcomm Incorporated
    Inventors: Jay R. Walton, Mark Wallace, Steven J. Howard
  • Publication number: 20030174666
    Abstract: When insufficient traffic is present in the network to maintain synchronization in this manner, other methods must be used. One approach involves making direct measurements of the timing between base stations. This is accomplished in one of two ways. The base may interrupt its transmissions on all sectors for a short interval during which it determines the time of arrival of signals from other base stations. Given knowledge of the other base station locations, time errors relative to all other base stations may be derived. Alternatively, the base may send a short signal at high power in the mobile transmit band. This time-of-arrival of this signal is measured by the surrounding base stations and the time errors between pairs of base stations are computed. In some cases, a base station may be isolated sufficiently from all other base stations in the network such that direct base-to-base measurement is not viable.
    Type: Application
    Filed: March 7, 2003
    Publication date: September 18, 2003
    Inventors: Mark S. Wallace, Edward G. Tiedemann, Charles E. Wheatley, J. Rod Walton, Steven J. Howard
  • Patent number: 6590881
    Abstract: When insufficient traffic is present in the network to maintain synchronization in this manner, other methods must be used. One approach involves making direct measurements of the timing between base stations. This is accomplished in one of two ways. The base may interrupt its transmissions on all sectors for a short interval during which it determines the time of arrival of signals from other base stations. Given knowledge of the other base station locations, time errors relative to all other base stations may be derived. Alternatively, the base may send a short signal at high power in the mobile transmit band. This time-of-arrival of this signal is measured by the surrounding base stations and the time errors between pairs of base stations are computed. In some cases, a base station may be isolated sufficiently from all other base stations in the network such that direct base-to-base measurement is not viable.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: July 8, 2003
    Assignee: Qualcomm, Incorporated
    Inventors: Mark S. Wallace, Edward G. Tiedemann, Jr., Charles E. Wheatley, III, J. Rod Walton, Steven J. Howard
  • Publication number: 20030125040
    Abstract: Techniques to achieve better utilization of the available resources and robust performance for the downlink and uplink in a multiple-access MIMO system. Techniques are provided to adaptively process data prior to transmission, based on channel state information, to more closely match the data transmission to the capacity of the channel. Various receiver processing techniques are provided to process a data transmission received via multiple antennas at a receiver unit. Adaptive reuse schemes and power back-off are also provided to operate the cells in the system in a manner to further increase the spectral efficiency of the system (e.g., reduce interference, improve coverage, and attain high throughput). Techniques are provided to efficiently schedule data transmission on the downlink and uplink. The scheduling schemes may be designed to optimize transmissions (e.g., maximize throughput) for single or multiple terminals in a manner to meet various constraints and requirements.
    Type: Application
    Filed: November 6, 2001
    Publication date: July 3, 2003
    Inventors: Jay R. Walton, Mark Wallace, Steven J. Howard
  • Publication number: 20030108117
    Abstract: Techniques for processing a data transmission at the transmitter and receiver. In an aspect, a time-domain implementation is provided which uses frequency-domain singular value decomposition and “water-pouring” results to derive time-domain pulse-shaping and beam-steering solutions at the transmitter and receiver. The singular value decomposition is performed at the transmitter to determine eigen-modes (i.e., spatial subchannels) of the MIMO channel and to derive a first set of steering vectors used to “precondition” modulation symbols. The singular value decomposition is also performed at the receiver to derive a second set of steering vectors used to precondition the received signals such that orthogonal symbol streams are recovered at the receiver, which can simplify the receiver processing.
    Type: Application
    Filed: December 7, 2001
    Publication date: June 12, 2003
    Inventors: John W. Ketchum, Mark Wallace, Steven J. Howard, Jay Rod Walton
  • Publication number: 20030087673
    Abstract: Techniques to schedule downlink data transmission to a number of terminals in a wireless communication system. In one method, one or more sets of terminals are formed for possible data transmission, with each set including a unique combination of one more terminals and corresponding to a hypothesis to be evaluated. One or more sub-hypotheses may further be formed for each hypothesis, with each sub-hypothesis corresponding to specific assignments of a number of transmit antennas to the one or more terminals in the hypothesis. The performance of each sub-hypothesis is then evaluated, and one of the evaluated sub-hypotheses is selected based on their performance. The terminal(s) in the selected sub-hypothesis are then scheduled for data transmission, and data is thereafter coded, modulated, and transmitted to each scheduled terminal from one or more transmit antennas assigned to the terminal.
    Type: Application
    Filed: May 16, 2001
    Publication date: May 8, 2003
    Inventors: Jay R. Walton, Mark Wallace, Steven J. Howard
  • Publication number: 20030086371
    Abstract: Techniques to adaptively control the rate of a data transmission in a wireless (e.g., OFDM) communication system. In an aspect, various types of metrics may be derived and used to select the proper rate for the data transmission. Some types of metrics relate to different characteristics of the communication channel, such as SNR, frequency selectivity, time selectivity, and so on. One type of metric relates to the performance of the data transmission. In another aspect, the various types of metrics may be used in different manners to adaptively control the rate. Some metrics may be used for open-loop control of the rate, other metrics may be used for closed-loop control, and some may be used for both. For example, the channel metrics may be used to determine or select the rate, and the performance metrics may be used to determine whether or not to adjust the rate.
    Type: Application
    Filed: November 2, 2001
    Publication date: May 8, 2003
    Inventors: Jay R. Walton, John W. Ketchum, Steven J. Howard, Mark Wallace
  • Publication number: 20030081538
    Abstract: In one aspect of a multiple-access OFDM-CDMA system, the data spreading is performed in the frequency domain by spreading each data stream with a respective spreading code selected from a set of available spreading codes. To support multiple access, system resources may be allocated and de-allocated to users (e.g., spreading codes may be assigned to users as needed, and transmit power may be allocated to users). Variable rate data for each user may be supported via a combination of spreading adjustment and transmit power scaling. Interference control techniques are also provided to improve system performance via power control of the downlink and/or uplink transmissions to achieve the desired level of performance while minimizing interference. A pilot may be transmitted by each transmitter unit to assist the receiver units perform acquisition, timing synchronization, carrier recovery, handoff, channel estimation, coherent data demodulation, and so on.
    Type: Application
    Filed: October 18, 2001
    Publication date: May 1, 2003
    Inventors: Jay R. Walton, John W. Ketchum, Steven J. Howard, Mark Wallace
  • Patent number: 6542488
    Abstract: A method and apparatus for controlling the transmission of signals from one or more of a plurality of mobile stations to a base station on a plurality of M multiple access channels. A power control information packet formed from a plurality of power control bits is transmitted from the base station to the one or more mobile stations. Each of the power control bits in the power control information packet has a position that is mapped to a selected access channel and to a time offset within the selected access channel. The power control information packet is received at a first mobile station. A message is then transmitted from the first mobile station to the base station on a first access channel and at a first time offset associated with the first access channel. The message is transmitted from the first mobile station at a power level determined in response to a first power control bit in the power control information packet.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: April 1, 2003
    Assignee: Qualcomm Incorporated
    Inventors: Jay R. Walton, John W. Ketchum, Steven J. Howard, Mark S. Wallace
  • Publication number: 20030048856
    Abstract: Techniques to process data for transmission over a set of transmission channels selected from among all available transmission channels. In an aspect, the data processing includes coding data based on a common coding and modulation scheme to provide modulation symbols and pre-weighting the modulation symbols for each selected channel based on the channel's characteristics. The pre-weighting may be achieved by “inverting” the selected channels so that the received SNRs are approximately similar for all selected channels. With selective channel inversion, only channels having SNRs at or above a particular threshold are selected, “bad” channels are not used, and the total available transmit power is distributed across only “good” channels. Improved performance is achieved due to the combined benefits of using only the Ns best channels and matching the received SNR of each selected channel to the SNR required by the selected coding and modulation scheme.
    Type: Application
    Filed: May 17, 2001
    Publication date: March 13, 2003
    Inventors: John W. Ketchum, Steven J. Howard, Jay Rod Walton, Mark S. Wallace, Fulyun Ling
  • Publication number: 20030035491
    Abstract: Techniques to “successively” process received signals at a receiver unit in a MIMO system to recover transmitted data, and to “adaptively” process data at a transmitter unit based on channel state information available for the MIMO channel. A successive cancellation receiver processing technique is used to process the received signals and performs a number of iterations to provide decoded data streams. For each iteration, input (e.g., received) signals for the iteration are processed to provide one or more symbol streams. One of the symbol streams is selected and processed to provide a decoded data stream. The interference due to the decoded data stream is approximately removed (i.e., canceled) from the input signals provided to the next iteration. The channel characteristics are estimated and reported back to the transmitter system and used to adjust (i.e., adapt) the processing (e.g., coding, modulation, and so on) of data prior to transmission.
    Type: Application
    Filed: May 11, 2001
    Publication date: February 20, 2003
    Inventors: Jay R. Walton, Mark Wallace, John W. Ketchum, Steven J. Howard
  • Publication number: 20030003880
    Abstract: Techniques for transmitting data from a transmitter unit to a receiver unit in a multiple-input multiple-output (MIMO) communication system. In one method, at the receiver unit, a number of signals are received via a number of receive antennas, with the received signal from each receive antenna comprising a combination of one or more signals transmitted from the transmitter unit. The received signals are processed with a spatial, a space-time, or a full-CSI technique to derive channel state information (CSI) indicative of the characteristics of a number of transmission channels used for data transmission. The CSI (which may comprise SNR estimates, data rate indicators, complex channel gains, or some other information) is transmitted back to the transmitter unit. At the transmitter unit, the CSI is received and data for transmission to the receiver unit is processed (e.g., coded and modulated) based on the received CSI.
    Type: Application
    Filed: September 18, 2001
    Publication date: January 2, 2003
    Inventors: Fuyun Ling, Jay R. Walton, Steven J. Howard, Mark Wallace, John W. Ketchum
  • Publication number: 20020191703
    Abstract: Techniques for transmitting data from a transmitter unit to a receiver unit in a multiple-input multiple-output (MIMO) communication system. In one method, at the receiver unit, a number of signals are received via a number of receive antennas, with the received signal from each receive antenna comprising a combination of one or more signals transmitted from the transmitter unit. The received signals are processed to derive channel state information (CSI) indicative of characteristics of a number of transmission channels used for data transmission. The CSI is transmitted back to the transmitter unit. At the transmitter unit, the CSI from the receiver unit is received and data for transmission to the receiver unit is processed based on the received CSI.
    Type: Application
    Filed: March 23, 2001
    Publication date: December 19, 2002
    Inventors: Fuyun Ling, Jay R. Walton, Steven J. Howard, Mark Wallace, John W. Ketchum