Patents by Inventor Steven J. Keating

Steven J. Keating has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240068135
    Abstract: Interlacing equipment may be used to form fabric and to create a gap in the fabric. The fabric may include one or more conductive strands. An insertion tool may be used to align an electrical component with the conductive strands during interlacing operations. A soldering tool may be used to remove insulation from the conductive strands to expose conductive segments on the conductive strands. The soldering tool may be used to solder the conductive segments to the electrical component. The solder connections may be located in grooves in the electrical component. An encapsulation tool may dispense encapsulation material in the grooves to encapsulate the solder connections. After the electrical component is electrically connected to the conductive strands, the insertion tool may position and release the electrical component in the gap. A component retention tool may temporarily be used to retain the electrical component in the gap as interlacing operations continue.
    Type: Application
    Filed: November 8, 2023
    Publication date: February 29, 2024
    Inventors: Kyle L. Chatham, Kathryn P. Crews, Didio V. Gomes, Benjamin J. Grena, Storrs T. Hoen, Steven J. Keating, David M. Kindlon, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine, Lia M. Uesato, Joseph B. Walker, Felix Binder, Bertram Wendisch, Martin Latta, Ulrich Schläpfer, Franck Robin, Michael Baumann, Helen Wächter Fischer
  • Patent number: 11913143
    Abstract: Interlacing equipment may be used to form fabric and to create a gap in the fabric. The fabric may include one or more conductive strands. An insertion tool may be used to align an electrical component with the conductive strands during interlacing operations. A soldering tool may be used to remove insulation from the conductive strands to expose conductive segments on the conductive strands. The soldering tool may be used to solder the conductive segments to the electrical component. The solder connections may be located in grooves in the electrical component. An encapsulation tool may dispense encapsulation material in the grooves to encapsulate the solder connections. After the electrical component is electrically connected to the conductive strands, the insertion tool may position and release the electrical component in the gap. A component retention tool may temporarily be used to retain the electrical component in the gap as interlacing operations continue.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: February 27, 2024
    Assignee: Apple Inc.
    Inventors: Kyle L Chatham, Kathryn P. Crews, Didio V. Gomes, Benjamin J. Grena, Storrs T. Hoen, Steven J. Keating, David M. Kindlon, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine, Lia M. Uesato, Joseph B. Walker, Felix Binder, Bertram Wendisch, Martin Latta, Ulrich Schläpfer, Franck Robin, Michael Baumann, Helen Wächter Fischer
  • Patent number: 11668026
    Abstract: A fabric-based item may include fabric formed from intertwined strands of material. The fabric may include first and second fabric layers that at least partially surround a pocket. Initially, the pocket may be completely enclosed by the first and second layers of fabric. A shim may be placed in the pocket before the pocket is closed. An opening may be formed in the first layer of fabric to expose a conductive strand in the pocket. The shim may prevent the cutting tool from cutting all the way through to the second layer of fabric. After cutting the hole in the first layer of fabric, the shim may be removed and an electrical component may be soldered to the conductive strand in the pocket. A polymer material may be injected into the pocket to encapsulate the electrical component. The polymer material may interlock with the surrounding pocket walls.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: June 6, 2023
    Assignee: Apple Inc.
    Inventors: Peter F. Coxeter, Didio V. Gomes, Benjamin J. Grena, Steven J. Keating, David M. Kindlon, Maurice P. May, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine
  • Publication number: 20230000435
    Abstract: A fabric-based item may be provided with a stretchable band. The stretchable band may be formed from a ring-shaped strip of stretchable fabric having an opening configured to fit around a body part of a user. Circuitry may be coupled to strands of material in the stretchable band. The circuitry may include sensor circuitry for making measurements on the body part such as electrocardiogram measurements, blood pressure measurements, and respiration rate measurements. Wireless communications circuitry in the fabric-based item may be used to communicate wirelessly with external electronic equipment. A wireless power transmitting device may transmit wireless power. A coil formed from conductive strands in the fabric-based item may be used by wireless power receiving circuitry in the fabric-based item to receive the wireless power. The coil may have one or more turns that run around the ring-shaped strip of stretchable fabric.
    Type: Application
    Filed: August 31, 2022
    Publication date: January 5, 2023
    Inventors: Steven J. Keating, Daniel D. Sunshine, Benjamin J. Grena, Daniel A. Podhajny, Jerzy S. Guterman, Jessica J. Lu, David M. Kindlon
  • Patent number: 11484264
    Abstract: A fabric-based item may be provide with a stretchable band. The stretchable band may be formed from a ring-shaped strip of stretchable fabric having an opening configured to fit around a body part of a user. Circuitry may be coupled to strands of material in the stretchable band. The circuitry may include sensor circuitry for making measurements on the body part such as electrocardiogram measurements, blood pressure measurements, and respiration rate measurements. Wireless communications circuitry in the fabric-based item may be used to communicate wirelessly with external electronic equipment. A wireless power transmitting device may transmit wireless power. A coil formed from conductive strands in the fabric-based item may be used by wireless power receiving circuitry in the fabric-based item to receive the wireless power. The coil may have one or more turns that run around the ring-shaped strip of stretchable fabric.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: November 1, 2022
    Assignee: Apple Inc.
    Inventors: Steven J. Keating, Daniel D. Sunshine, Benjamin J. Grena, Daniel A. Podhajny, Jerzy S. Guterman, Jessica J. Lu, David M. Kindlon
  • Patent number: 11233012
    Abstract: A fabric-based item may include fabric formed from intertwined strands of material with embedded circuitry. The strands of material may be formed from dielectric materials such as polymers. The strands of material may be formed from joined segments of polymer strand material or other material. Each joined segment may contain a potentially distinct circuit. Some joined segments may include one or more conductive lines. The conductive lines may run parallel to each other along the length of the joined segments to form circuit interconnects. Conductive lines may be joined to contact pads on integrated circuits and other embedded components formed from semiconductor dies. Control circuitry formed from the integrated circuits embedded in strands of material in the fabric and other control circuitry may be used to control the circuitry embedded in the fabric.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: January 25, 2022
    Assignee: Apple Inc.
    Inventors: Steven J. Keating, Daniel D. Sunshine, Benjamin J. Grena
  • Patent number: 11180871
    Abstract: A fabric-based item may include fabric formed from intertwined strands of material such as intertwined strands of tubing. The strands of material may include electrophoretic ink formed from charged nanoparticles of different colors in fluid. The electrophoretic ink may be contained within strands of tubing or may be enclosed within encapsulation structures such as encapsulation spheres. Encapsulation spheres or other encapsulation structures may be embedded in clear polymer binder within tubing or other strands. Electroluminescent particles may be included in the clear polymer binder. Electric fields can be applied to the electrophoretic ink in a given area of the fabric using conductive strands that overlap the area, using conductive electrodes such as transparent conductive electrodes on strands of tubing, using coaxial electrodes, or using other electrode structures.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: November 23, 2021
    Assignee: Apple Inc.
    Inventors: Steven J. Keating, Daniel D. Sunshine, Kathryn P. Crews, Daniel A. Podhajny, Nicholas G. L. Merz
  • Publication number: 20210045685
    Abstract: A fabric-based item may be provide with a stretchable band. The stretchable band may be formed from a ring-shaped strip of stretchable fabric having an opening configured to fit around a body part of a user. Circuitry may be coupled to strands of material in the stretchable band. The circuitry may include sensor circuitry for making measurements on the body part such as electrocardiogram measurements, blood pressure measurements, and respiration rate measurements. Wireless communications circuitry in the fabric-based item may be used to communicate wirelessly with external electronic equipment. A wireless power transmitting device may transmit wireless power. A coil formed from conductive strands in the fabric-based item may be used by wireless power receiving circuitry in the fabric-based item to receive the wireless power. The coil may have one or more turns that run around the ring-shaped strip of stretchable fabric.
    Type: Application
    Filed: November 3, 2020
    Publication date: February 18, 2021
    Inventors: Steven J. Keating, Daniel D. Sunshine, Benjamin J. Grena, Daniel A. Podhajny, Jerzy S. Guterman, Jessica J. Lu, David M. Kindlon
  • Patent number: 10849557
    Abstract: A fabric-based item may be provide with a stretchable band. The stretchable band may be formed from a ring-shaped strip of stretchable fabric having an opening configured to fit around a body part of a user. Circuitry may be coupled to strands of material in the stretchable band. The circuitry may include sensor circuitry for making measurements on the body part such as electrocardiogram measurements, blood pressure measurements, and respiration rate measurements. Wireless communications circuitry in the fabric-based item may be used to communicate wirelessly with external electronic equipment. A wireless power transmitting device may transmit wireless power. A coil formed from conductive strands in the fabric-based item may be used by wireless power receiving circuitry in the fabric-based item to receive the wireless power. The coil may have one or more turns that run around the ring-shaped strip of stretchable fabric.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: December 1, 2020
    Assignee: Apple Inc.
    Inventors: Steven J. Keating, Daniel D. Sunshine, Benjamin J. Grena, Daniel A. Podhajny, Jerzy S. Guterman, Jessica J. Lu, David M. Kindlon
  • Publication number: 20200283935
    Abstract: Interlacing equipment may be used to form fabric and to create a gap in the fabric. The fabric may include one or more conductive strands. An insertion tool may be used to align an electrical component with the conductive strands during interlacing operations. A soldering tool may be used to remove insulation from the conductive strands to expose conductive segments on the conductive strands. The soldering tool may be used to solder the conductive segments to the electrical component. The solder connections may be located in grooves in the electrical component. An encapsulation tool may dispense encapsulation material in the grooves to encapsulate the solder connections. After the electrical component is electrically connected to the conductive strands, the insertion tool may position and release the electrical component in the gap. A component retention tool may temporarily be used to retain the electrical component in the gap as interlacing operations continue.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 10, 2020
    Inventors: Kyle L. Chatham, Kathryn P. Crews, Didio V. Gomes, Benjamin J. Grena, Storrs T. Hoen, Steven J. Keating, David M. Kindlon, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine, Lia M. Uesato, Joseph B. Walker, Felix Binder, Bertram Wendisch, Martin Latta, Ulrich Schläpfer, Franck Robin, Michael Baumann, Helen Wächter Fischer
  • Patent number: 10761605
    Abstract: An item such as a glove may be formed from knitted fabric. The knitted fabric may form fingers for the glove and may form pockets in the fingers. Sensors such as inertial measurement units may be placed in the pockets to measure movements of a user's fingers in the glove. The sensors may be coupled to control circuitry in the glove using conductive yarn in the knitted fabric. The conductive yarn may form courses in the knitted fabric that run along each finger. Haptic components and other electrical components may be coupled to the control circuitry using the conductive yarn. Electrodes may be formed from metal-coated strands of material in the fabric on the sides of each finger. The wireless or wired communications circuitry coupled to the control circuitry may be used to convey information such as user finger movement information to external equipment.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: September 1, 2020
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, Andrew L. Rosenberg, Andrew Sterian, Daniel A. Podhajny, Lia M. Uesato, Maurice P. May, Steven J. Keating
  • Publication number: 20200087823
    Abstract: A fabric-based item may include fabric formed from intertwined strands of material. The fabric may include first and second fabric layers that at least partially surround a pocket. Initially, the pocket may be completely enclosed by the first and second layers of fabric. A shim may be placed in the pocket before the pocket is closed. An opening may be formed in the first layer of fabric to expose a conductive strand in the pocket. The shim may prevent the cutting tool from cutting all the way through to the second layer of fabric. After cutting the hole in the first layer of fabric, the shim may be removed and an electrical component may be soldered to the conductive strand in the pocket. A polymer material may be injected into the pocket to encapsulate the electrical component. The polymer material may interlock with the surrounding pocket walls.
    Type: Application
    Filed: May 17, 2019
    Publication date: March 19, 2020
    Inventors: Peter F. Coxeter, Didio V. Gomes, Benjamin J. Grena, Steven J. Keating, David M. Kindlon, Maurice P. May, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine
  • Publication number: 20190298265
    Abstract: A fabric-based item may be provide with a stretchable band. The stretchable band may be formed from a ring-shaped strip of stretchable fabric having an opening configured to fit around a body part of a user. Circuitry may be coupled to strands of material in the stretchable band. The circuitry may include sensor circuitry for making measurements on the body part such as electrocardiogram measurements, blood pressure measurements, and respiration rate measurements. Wireless communications circuitry in the fabric-based item may be used to communicate wirelessly with external electronic equipment. A wireless power transmitting device may transmit wireless power. A coil formed from conductive strands in the fabric-based item may be used by wireless power receiving circuitry in the fabric-based item to receive the wireless power. The coil may have one or more turns that run around the ring-shaped strip of stretchable fabric.
    Type: Application
    Filed: September 24, 2018
    Publication date: October 3, 2019
    Inventors: Steven J. Keating, Daniel D. Sunshine, Benjamin J. Grena, Daniel A. Podhajny, Jerzy S. Guterman, Jessica J. Lu, David M. Kindlon
  • Publication number: 20190287910
    Abstract: A fabric-based item may include fabric formed from intertwined strands of material with embedded circuitry. The strands of material may be formed from dielectric materials such as polymers. The strands of material may be formed from joined segments of polymer strand material or other material. Each joined segment may contain a potentially distinct circuit. Some joined segments may include one or more conductive lines. The conductive lines may run parallel to each other along the length of the joined segments to form circuit interconnects. Conductive lines may be joined to contact pads on integrated circuits and other embedded components formed from semiconductor dies. Control circuitry formed from the integrated circuits embedded in strands of material in the fabric and other control circuitry may be used to control the circuitry embedded in the fabric.
    Type: Application
    Filed: September 18, 2018
    Publication date: September 19, 2019
    Inventors: Steven J. Keating, Daniel D. Sunshine, Benjamin J. Grena
  • Patent number: 10400366
    Abstract: A fabric-based item may include fabric formed from intertwined strands of material. The strands of material may include extruded strands. Strand extrusion equipment may have electrically adjustable sources such as one or more sources of different polymers, dyes, particles, wire, and other elements to be incorporated into an extruded strand. The properties of the strands such as strand stiffness, strand diameter, conductivity, magnetic permeability, opacity, color, thermal conductivity, sand strength, may be varied along their lengths. Fabric formed from the strands may have different areas with different properties. Markers may be formed from particles at particular locations along the lengths of the strands, may be optical marker structures formed from circumferential rings of ink or other visible material on the strands, or may be other markers that can be sensed using electrical sensing, magnetic sensing, optical sensing, or other types of sensing when forming fabric from the strands.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: September 3, 2019
    Assignee: Apple Inc.
    Inventors: Steven J. Keating, Daniel A. Podhajny, Daniel D. Sunshine, Kathryn P. Crews
  • Publication number: 20180363173
    Abstract: A fabric-based item may include fabric formed from intertwined strands of material such as intertwined strands of tubing. The strands of material may include electrophoretic ink formed from charged nanoparticles of different colors in fluid. The electrophoretic ink may be contained within strands of tubing or may be enclosed within encapsulation structures such as encapsulation spheres. Encapsulation spheres or other encapsulation structures may be embedded in clear polymer binder within tubing or other strands. Electroluminescent particles may be included in the clear polymer binder. Electric fields can be applied to the electrophoretic ink in a given area of the fabric using conductive strands that overlap the area, using conductive electrodes such as transparent conductive electrodes on strands of tubing, using coaxial electrodes, or using other electrode structures.
    Type: Application
    Filed: March 30, 2018
    Publication date: December 20, 2018
    Inventors: Steven J. Keating, Daniel D. Sunshine, Kathryn P. Crews, Daniel A. Podhajny, Nicholas G. L. Merz
  • Publication number: 20180363172
    Abstract: A fabric-based item may include fabric formed from intertwined strands of material. The strands of material may include extruded strands. Strand extrusion equipment may have electrically adjustable sources such as one or more sources of different polymers, dyes, particles, wire, and other elements to be incorporated into an extruded strand. The properties of the strands such as strand stiffness, strand diameter, conductivity, magnetic permeability, opacity, color, thermal conductivity, sand strength, may be varied along their lengths. Fabric formed from the strands may have different areas with different properties. Markers may be formed from particles at particular locations along the lengths of the strands, may be optical marker structures formed from circumferential rings of ink or other visible material on the strands, or may be other markers that can be sensed using electrical sensing, magnetic sensing, optical sensing, or other types of sensing when forming fabric from the strands.
    Type: Application
    Filed: March 30, 2018
    Publication date: December 20, 2018
    Inventors: Steven J. Keating, Daniel A. Podhajny, Daniel D. Sunshine, Kathryn P. Crews
  • Patent number: 8441097
    Abstract: Methods to form memory devices having a MIM capacitor with a recessed electrode are described. In one embodiment, a method of forming a MIM capacitor with a recessed electrode includes forming an excavated feature defined by a lower portion that forms a bottom and an upper portion that forms sidewalls of the excavated feature. The method includes depositing a lower electrode layer in the feature, depositing an electrically insulating layer on the lower electrode layer, and depositing an upper electrode layer on the electrically insulating layer to form the MIM capacitor. The method includes removing an upper portion of the MIM capacitor to expose an upper surface of the electrode layers and then selectively etching one of the electrode layers to recess one of the electrode layers. This recess isolates the electrodes from each other and reduces the likelihood of a current leakage path between the electrodes.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: May 14, 2013
    Assignee: Intel Corporation
    Inventors: Joseph M. Steigerwald, Nick Lindert, Steven J. Keating, Christopher J. Jezewski, Timothy E. Glassman
  • Patent number: 8441057
    Abstract: A method of patterning a metal (141, 341, 841) on a vertical sidewall (132, 332, 832) of an excavated feature (130, 330, 830) includes placing a material (350) in the excavated feature such that a portion (435) of the metal is exposed in the excavated feature above the material, etching the exposed portion of the metal away from the vertical sidewall using a first wet etch chemistry, and removing the material from the excavated feature by etching it away using a second wet etch chemistry. The described method may be used to produce a MIM capacitor (800) suitable for an eDRAM device.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: May 14, 2013
    Assignee: Intel Corporation
    Inventors: Steven J. Keating, Nick Lindert, Nadia Rahhal-Orabi, Brian Doyle, Satyarth Suri, Swaminathan Sivakumar, Lana Jong, Lin Sha
  • Publication number: 20110147888
    Abstract: Methods to form memory devices having a MIM capacitor with a recessed electrode are described. In one embodiment, a method of forming a MIM capacitor with a recessed electrode includes forming an excavated feature defined by a lower portion that forms a bottom and an upper portion that forms sidewalls of the excavated feature. The method includes depositing a lower electrode layer in the feature, depositing an electrically insulating layer on the lower electrode layer, and depositing an upper electrode layer on the electrically insulating layer to form the MIM capacitor. The method includes removing an upper portion of the MIM capacitor to expose an upper surface of the electrode layers and then selectively etching one of the electrode layers to recess one of the electrode layers. This recess isolates the electrodes from each other and reduces the likelihood of a current leakage path between the electrodes.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Joseph M. Steigerwald, Nick Lindert, Steven J. Keating, Christopher J. Jezewski, Timothy E. Glassman