Patents by Inventor Steven J. Oldenburg

Steven J. Oldenburg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230139868
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 4, 2023
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Patent number: 11583553
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: February 21, 2023
    Assignees: NANOCOMPOSIX, LLC, CORONADO AESTHETICS, LLC
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Publication number: 20200306294
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Patent number: 10688126
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: June 23, 2020
    Assignees: nanoComposix, Inc., Sebacia, Inc.
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Patent number: 9675953
    Abstract: The disclosed technology relates generally to material systems which include a plurality of particles and methods of making the same. The particles have a core and a shell which encapsulates the core and has at least one atomic element not included in the core. The cores of the particles have a median maximum dimension that is less than 10 microns and a median of at least one axial dimension that is between 10 nm and 500 nm. The shells of the particles have a median thickness that is less than 100 nm, a silicon concentration that is between 10% and 50% on the basis of the weight of the shells, and an aluminum concentration that is between 0.01% and 5% on the basis of the weight of the shells.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: June 13, 2017
    Assignee: nanoComposix, Inc.
    Inventors: Steven J. Oldenburg, Richard K. Baldwin
  • Publication number: 20170087183
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Application
    Filed: December 9, 2016
    Publication date: March 30, 2017
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Patent number: 9526745
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: December 27, 2016
    Assignees: nanoComposix, Inc., Sienna Biopharmaceuticals, Inc.
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Publication number: 20160287741
    Abstract: Embodiments of the present invention relate to a metastable silver nanoparticle composite, a process for its manufacture, and its use as a source for silver ions and/or colorimetric signaling In various embodiments, the composite comprises, consists essentially of or consists of metastable silver nanoparticles that change shape when exposed to moisture, a stability modulant that controls the rate of the shape change, and a substrate to support the silver nanoparticles and the modulant.
    Type: Application
    Filed: November 18, 2014
    Publication date: October 6, 2016
    Inventors: Todd J. HARRIS, Steven J. OLDENBURG, Richard K. BALDWIN
  • Publication number: 20160250612
    Abstract: The disclosed technology relates generally to material systems which include a plurality of particles and methods of making the same. The particles have a core and a shell which encapsulates the core and has at least one atomic element not included in the core. The cores of the particles have a median maximum dimension that is less than 10 microns and a median of at least one axial dimension that is between 10 nm and 500 nm. The shells of the particles have a median thickness that is less than 100 nm, a silicon concentration that is between 10% and 50% on the basis of the weight of the shells, and an aluminum concentration that is between 0.01% and 5% on the basis of the weight of the shells.
    Type: Application
    Filed: October 9, 2014
    Publication date: September 1, 2016
    Inventors: Steven J. OLDENBURG, Richard K. BALDWIN
  • Publication number: 20160101130
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoplates, such as silver nanoplates or silver platelet nanoparticles, and to nanoparticles, solutions and substrates prepared by said methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Application
    Filed: December 18, 2015
    Publication date: April 14, 2016
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba
  • Publication number: 20160075851
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Application
    Filed: November 20, 2015
    Publication date: March 17, 2016
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Patent number: 9249334
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoplates, such as silver nanoplates or silver platelet nanoparticles, and to nanoparticles, solutions and substrates prepared by said methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: February 2, 2016
    Assignee: nanoComposix, Inc.
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba
  • Patent number: 9212294
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: December 15, 2015
    Assignees: nanoComposix, Inc., Sienna Labs, Inc.
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Publication number: 20150225599
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Application
    Filed: April 8, 2015
    Publication date: August 13, 2015
    Inventors: Steven J. Oldenburg, Martin G. Miranda, David S. Sebba, Todd J. Harris
  • Patent number: 8852731
    Abstract: A pyrophoric sheet that comprises oxidizable iron, non-combustible fibers, stiction-reducing coating where the sheet has a water content <2%.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: October 7, 2014
    Assignee: nanoComposix, Inc.
    Inventors: Richard K. Baldwin, Steven J. Oldenburg, Andrew R. Smith
  • Publication number: 20140162003
    Abstract: A pyrophoric sheet that comprises oxidizable iron, non-combustible fibers, stiction-reducing coating where the sheet has a water content<2%.
    Type: Application
    Filed: July 19, 2012
    Publication date: June 12, 2014
    Applicant: NANOCOMPOSIX, INC.
    Inventors: Richard K. Baldwin, Steven J. Oldenburg, Andrew R. Smith
  • Publication number: 20140120168
    Abstract: Embodiments of the present invention relate to a metastable silver nanoparticle composite, a process for its manufacture, and its use as a source for silver ions. In various embodiments, the composite comprises, consists essentially of, or consists of metastable silver nanoparticles that change shape when exposed to moisture, a stability modulant that controls the rate of the shape change, and a substrate to support the silver nanoparticles and the modulant.
    Type: Application
    Filed: October 25, 2013
    Publication date: May 1, 2014
    Inventors: STEVEN J. OLDENBURG, RICHARD K. BALDWIN
  • Publication number: 20140105982
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoplates, such as silver nanoplates or silver platelet nanoparticles, and to nanoparticles, solutions and substrates prepared by said methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 17, 2014
    Applicant: nanoComposix, Inc.
    Inventors: Steven J. Oldenburg, Martin G. Miranda, David S. Sebba
  • Publication number: 20080261045
    Abstract: The invention provides a method of making composite particles for efficient delivery of polyelectrolytes to a target. Composite particles are made by two methods: 1) by first forming disperse polyelectrolyte condensates, by mixing the polyelectrolyte with a condensing agent, and then combining the disperse polyelectrolyte condensates with particles so that the disperse polyelectrolyte condensates bind to the surfaces of the particles or 2) combining particles with opposite charge polyelectrolyte to form a polyelectrolyte coated particles followed by a subsequent polyelectrolyte of opposite charge to form a composite particle. The invention includes composite particles, where each composite particle is comprised of a particle with the polyelectrolyte from one or more polyelectrolyte condensates bound to that particle. One advantage of these composite particles is that they permit more efficient and increased amounts of polyelectrolytes to be delivered to a target, in comparison to the prior art.
    Type: Application
    Filed: January 18, 2008
    Publication date: October 23, 2008
    Inventors: James R. Glass, David Schultz, Steven J. Oldenburg
  • Patent number: 7371457
    Abstract: The present invention is for particulate compositions and methods for producing them that can absorb or scatter electromagnetic radiation. The particles are homogeneous in size and are comprised of a nonconducting inner layer that is surrounded by an electrically conducting material. The ratio of the thickness of the nonconducting layer to the thickness of the outer conducting shell is determinative of the wavelength of maximum absorbance or scattering of the particle. Unique solution phase methods for synthesizing the particles involve linking clusters of the conducting atoms, ions, or molecules to the nonconducting inner layer by linear molecules. This step can be followed by growth of the metal onto the clusters to form a coherent conducting shell that encapsulates the core.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: May 13, 2008
    Assignee: William Marsh Rich University
    Inventors: Steven J. Oldenburg, Richard D. Averitt, Nancy J. Halas