Patents by Inventor Steven James Spencer

Steven James Spencer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11753922
    Abstract: A system or method for drilling includes autonomously controlling a rotary or percussive drilling process as it transitions through multiple materials with very different dynamics. The method determines a drilling medium based on real-time measurements and comparison to prior drilling data, and identifies the material type, drilling region, and approximately optimal setpoint based on data from at least one operating condition. The controller uses these setpoints initially to execute an optimal search to maximize performance by minimizing mechanical specific energy. Near-bit depth-of-cut estimations are performed using a machine learning prediction deployed in an embedded processor to provide high-speed ROP estimates. The sensing capability is coupled with a near-bit clutching mechanism to support drilling dysfunction mitigation.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: September 12, 2023
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Stephen Buerger, Anirban Mazumdar, Steven James Spencer, Timothy James Blada, Jiann-Cherng Su, Elton K. Wright, Adam Foris, David W. Raymond
  • Patent number: 11724923
    Abstract: A control system and method for tensioning an active tether for a multirotor unmanned aerial system is provided. The control system includes a tensioning pulley and a tensioning spring. The tensioning spring is arranged to generate a variable tension force on the active tether. A transducer is connected adjacent to the tensioning spring to sense a linear displacement position of the tensioning pulley and to transmit a position signal to a controller. The position signal is proportional to the linear displacement position. A servomotor in communication with the controller receives a control signal from the controller in response to the position signal. The servomotor drives a cable reel. The cable reel is rotatably mounted in the frame for spooling the tether in response to rotation of the servomotor. The cable reel is rotated by the servomotor to maintain a predetermined tension on the tensioning spring.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: August 15, 2023
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Diane Schafer Callow, Steven James Spencer, Scott E. Rose
  • Patent number: 11280173
    Abstract: A system or method for drilling includes autonomously controlling a rotary or percussive drilling process as it transitions through multiple materials with very different dynamics. The method determines a drilling medium based on real-time measurements and comparison to prior drilling data, and identifies the material type, drilling region, and approximately optimal setpoint based on data from at least one operating condition. The controller uses these setpoints initially to execute an optimal search to maximize performance by minimizing mechanical specific energy. Near-bit depth-of-cut estimations are performed using a machine learning prediction deployed in an embedded processor to provide high-speed ROP estimates. The sensing capability is coupled with a near-bit clutching mechanism to support drilling dysfunction mitigation.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: March 22, 2022
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Stephen Buerger, Anirban Mazumdar, Steven James Spencer, Timothy James Blada, Jiann-Cherng Su, Elton K. Wright, Adam Foris, David W. Raymond
  • Patent number: 10900343
    Abstract: A system or method for drilling includes autonomously controlling a rotary or percussive drilling process as it transitions through multiple materials with very different dynamics. The method determines a drilling medium based on real-time measurements and comparison to prior drilling data, and identifies the material type, drilling region, and approximately optimal setpoint based on data from at least one operating condition. The controller uses these setpoints initially to execute an optimal search to maximize performance by minimizing mechanical specific energy.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: January 26, 2021
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Stephen Buerger, Anirban Mazumdar, Steven James Spencer, Timothy James Blada, Jiann-Cherng Su, Elton K. Wright, Adam Foris, David W. Raymond