Patents by Inventor Steven Jeffrey Ford

Steven Jeffrey Ford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8637166
    Abstract: Provided are strain hardened high strength nickel based alloy welds that yield improved properties and performance in joining high strength metals. The advantageous weldments include two or more segments of ferrous or non-ferrous components, and fusion welds, friction stir welds, electron beam welds, laser beam welds, or a combination thereof bonding adjacent segments of the components together, wherein the welds comprise a strain hardened nickel based alloy weld metal composition including greater than or equal to 10 wt % Mo based on the total weight of the nickel based alloy weld metal composition. Also provided are methods for forming the welds from the nickel based alloy weld compositions. The strain hardened high strength nickel based alloy welds are useful in the oil, gas and petrochemical industry in applications for natural gas transportation and storage, oil and gas well completion and production, and oil and gas refinery and chemical plants.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: January 28, 2014
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Raghavan Ayer, Neeraj Srinivas Thirumalai, Hyun-Woo Jin, Daniel B. Lillig, Douglas Paul Fairchild, Steven Jeffrey Ford
  • Patent number: 8426033
    Abstract: Provided are precipitation hardened high strength nickel based alloy welds that yield improved properties and performance in joining high strength metals. The advantageous weldments include two or more segments of ferrous or non-ferrous components, and fusion welds, friction stir welds, electron beam welds, laser beam welds, or a combination thereof bonding adjacent segments of the components together, wherein the welds comprise a precipitation hardened nickel based alloy weld metal composition including greater than or equal to 1.4 wt % of combined aluminum and titanium based on the total weight of the nickel based alloy weld metal composition. Also provided are methods for forming the welds from the nickel based alloy weld compositions, wherein the precipitation hardening occurs in the as-welded condition. The nickel based welds do not require a separate heat treatment step after welding to produce advantageous strength properties.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: April 23, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Raghavan Ayer, Neeraj Srinivas Thirumalai, Hyun-Woo Jin, Daniel B. Lillig, Douglas Paul Fairchild, Steven Jeffrey Ford
  • Patent number: 7874471
    Abstract: Provided are butt welds and methods of making such butt welds using a combination of fusion root welding and friction stir welding to yield welds with decreased propensity for dropout during friction stir welding without the need for a back-up support plate. In one form of the present disclosure, the butt weld includes: two or more abutting structural steel components beveled on faying surfaces on one side of the components to form a suitably shaped fusion root weld groove and unbeveled on faying surfaces on the opposite side of the components and interconnected with a first fusion root weld on the beveled side of the components and a second friction stir weld on the unbeveled side of the components, wherein the first fusion root weld has a width ranging from 7 mm to 30 mm, a penetration depth ranging from 2 mm to 20 mm, and an overfill ranging from 2 mm to 5 mm, and wherein the stir zone of the second friction stir weld penetrates the first fusion root weld.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: January 25, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Douglas Paul Fairchild, Steven Jeffrey Ford, Amit Kumar, Nathan Eugene Nissley, Nicholas E. Biery, Mario L. Macia
  • Publication number: 20100159265
    Abstract: Provided are butt welds and methods of making such butt welds using a combination of fusion root welding and friction stir welding to yield welds with decreased propensity for dropout during friction stir welding without the need for a back-up support plate. In one form of the present disclosure, the butt weld includes: two or more abutting structural steel components beveled on faying surfaces on one side of the components to form a suitably shaped fusion root weld groove and unbeveled on faying surfaces on the opposite side of the components and interconnected with a first fusion root weld on the beveled side of the components and a second friction stir weld on the unbeveled side of the components, wherein the first fusion root weld has a width ranging from 7 mm to 30 mm, a penetration depth ranging from 2 mm to 20 mm, and an overfill ranging from 2 mm to 5 mm, and wherein the stir zone of the second friction stir weld penetrates the first fusion root weld.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 24, 2010
    Inventors: Douglas Paul Fairchild, Steven Jeffrey Ford, Amit Kumar, Nathan Eugene Nissley, Nicholas E. Biery, Mario L. Macia
  • Publication number: 20100136369
    Abstract: Provided are steel structures methods of making such steel structures including structural steel components bonded by friction stir weldments with advantageous microstructures to yield improved weldment strength and weldment toughness. In one form of the present disclosure, the steel structure includes: two or more structural steel components produced by conventional melting or secondary refining practices and friction stir weldments bonding faying surfaces of the components together, wherein the chemistry and grain size of the starting structural steel satisfies one or more of the following criteria: a) 0.02 wt %<Ti+Nb<0.12 wt %, b) 0.7<Ti/N<3.5, c) 0.5 wt %<Mo+W+Cr+Cu+Co+Ni<1.75 wt %, d) 0.01 wt %<TiN+NbC+TiO/MgO<0.
    Type: Application
    Filed: November 17, 2009
    Publication date: June 3, 2010
    Inventors: Raghavan Ayer, Douglas Paul Fairchild, Steven Jeffrey Ford, Hyun-Woo Jin, Adnan Ozekcin
  • Publication number: 20100021761
    Abstract: Provided are strain hardened high strength nickel based alloy welds that yield improved properties and performance in joining high strength metals. The advantageous weldments include two or more segments of ferrous or non-ferrous components, and fusion welds, friction stir welds, electron beam welds, laser beam welds, or a combination thereof bonding adjacent segments of the components together, wherein the welds comprise a strain hardened nickel based alloy weld metal composition including greater than or equal to 10 wt % Mo based on the total weight of the nickel based alloy weld metal composition. Also provided are methods for forming the welds from the nickel based alloy weld compositions. The strain hardened high strength nickel based alloy welds are useful in the oil, gas and petrochemical industry in applications for natural gas transportation and storage, oil and gas well completion and production, and oil and gas refinery and chemical plants.
    Type: Application
    Filed: December 16, 2008
    Publication date: January 28, 2010
    Inventors: Raghavan Ayer, Neeraj Srinivas Thirumalai, Hyun-Woo Jin, Daniel B. Lillig, Douglas Paul Fairchild, Steven Jeffrey Ford
  • Publication number: 20090155623
    Abstract: Provided are precipitation hardened high strength nickel based alloy welds that yield improved properties and performance in joining high strength metals. The advantageous weldments include two or more segments of ferrous or non-ferrous components, and fusion welds, friction stir welds, electron beam welds, laser beam welds, or a combination thereof bonding adjacent segments of the components together, wherein the welds comprise a precipitation hardened nickel based alloy weld metal composition including greater than or equal to 1.4 wt % of combined aluminum and titanium based on the total weight of the nickel based alloy weld metal composition. Also provided are methods for forming the welds from the nickel based alloy weld compositions, wherein the precipitation hardening occurs in the as-welded condition. The nickel based welds do not require a separate heat treatment step after welding to produce advantageous strength properties.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 18, 2009
    Inventors: Raghavan Ayer, Neeraj Srinivas Thirumalai, Hyun-Woo Jin, Daniel B. Lillig, Douglas Paul Fairchild, Steven Jeffrey Ford