Patents by Inventor Steven K. Groothuis

Steven K. Groothuis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9818625
    Abstract: Stacked semiconductor die assemblies with thermal spacers and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a thermally conductive casing defining a cavity, a stack of first semiconductor dies within the cavity, and a second semiconductor die stacked relative to the stack of first dies and carried by a package substrate. The semiconductor die assembly further includes a thermal spacer disposed between the package substrate and the thermally conductive casing. The thermal spacer can include a semiconductor substrate and plurality of conductive vias extending through the semiconductor substrate and electrically coupled to the stack of first semiconductor dies, the second semiconductor die, and the package substrate.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: November 14, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Jian Li, Steven K. Groothuis, Michel Koopmans
  • Patent number: 9780079
    Abstract: Semiconductor die assemblies and methods of forming the same are described herein. As an example, a semiconductor die assembly may include a thermally conductive casing, a first face of a logic die coupled to the thermally conductive casing to form a thermal path that transfers heat away from the logic die to the thermally conductive casing, a substrate coupled to a second face of the logic die, and a die embedded at least partially in a cavity of the substrate.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: October 3, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Jian Li, Steven K. Groothuis
  • Publication number: 20170229439
    Abstract: Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.
    Type: Application
    Filed: April 26, 2017
    Publication date: August 10, 2017
    Inventors: Sameer S. Vadhavkar, Xiao Li, Steven K. Groothuis, Jian Li, Jaspreet S. Gandhi, James M. Derderian, David R. Hembree
  • Patent number: 9691746
    Abstract: Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: June 27, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Sameer S. Vadhavkar, Xiao Li, Steven K. Groothuis, Jian Li, Jaspreet S. Gandhi, James M. Derderian, David R. Hembree
  • Publication number: 20160372452
    Abstract: A semiconductor die assembly having high efficiency thermal paths. In one embodiment, the semiconductor die assembly comprises a package support substrate, a first semiconductor die having a peripheral region and a stacking region, and a second semiconductor die attached to the stacking region of the first die such that the peripheral region is lateral of the second die. The assembly further includes a thermal transfer unit having a base attached to the peripheral region of the first die, a cover attached to the base by an adhesive, and a cavity defined by at least cover, wherein the second die is within the cavity. The assembly also includes an underfill in the cavity, wherein a fillet portion of the underfill extends a distance up along a portion of the footing and upward along at least a portion of the base.
    Type: Application
    Filed: September 1, 2016
    Publication date: December 22, 2016
    Inventors: Sameer S. Vadhavkar, Xiao Li, Steven K. Groothuis, Jian Li, Jaspreet S. Gandhi, James M. Derderian, David R. Hembree
  • Publication number: 20160343639
    Abstract: Semiconductor device assemblies having stacked semiconductor dies and thermal transfer devices that include vapor chambers are disclosed herein. In one embodiment, a semiconductor device assembly includes a first semiconductor die, a second semiconductor die at a base region of the first die, and a thermal transfer device attached to a peripheral region of the first die and extending over the second die. The thermal transfer device includes a conductive structure having an internal cavity and a working fluid at least partially filling the cavity. The conductive structure further includes first and second fluid conversion regions adjacent the cavity. The first fluid conversion region transfers heat from at least the peripheral region of the first die to a volume of the working fluid to vaporize the volume in the cavity, and the second fluid conversion region condenses the volume of the working fluid in the cavity after it has been vaporized.
    Type: Application
    Filed: May 22, 2015
    Publication date: November 24, 2016
    Inventors: Steven K. Groothuis, Jian Li
  • Publication number: 20160322340
    Abstract: Semiconductor die assemblies and methods of forming the same are described herein. As an example, a semiconductor die assembly may include a thermally conductive casing, a first face of a logic die coupled to the thermally conductive casing to form a thermal path that transfers heat away from the logic die to the thermally conductive casing, a substrate coupled to a second face of the logic die, and a die embedded at least partially in a cavity of the substrate.
    Type: Application
    Filed: April 30, 2015
    Publication date: November 3, 2016
    Inventors: Jian Li, Steven K. Groothuis
  • Patent number: 9443744
    Abstract: A semiconductor die assembly having high efficiency thermal paths. In one embodiment, the semiconductor die assembly comprises a package support substrate, a first semiconductor die having a peripheral region and a stacking region, and a second semiconductor die attached to the stacking region of the first die such that the peripheral region is lateral of the second die. The assembly further includes a thermal transfer unit having a base attached to the peripheral region of the first die, a cover attached to the base by an adhesive, and a cavity defined by at least cover, wherein the second die is within the cavity. The assembly also includes an underfill in the cavity, wherein a fillet portion of the underfill extends a distance up along a portion of the footing and upward along at least a portion of the base.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: September 13, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Sameer S. Vadhavkar, Xiao Li, Steven K. Groothuis, Jian Li, Jaspreet S. Gandhi, James M. Derderian, David R. Hembree
  • Publication number: 20160181125
    Abstract: Stacked semiconductor die assemblies with thermal spacers and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a thermally conductive casing defining a cavity, a stack of first semiconductor dies within the cavity, and a second semiconductor die stacked relative to the stack of first dies and carried by a package substrate. The semiconductor die assembly further includes a thermal spacer disposed between the package substrate and the thermally conductive casing. The thermal spacer can include a semiconductor substrate and plurality of conductive vias extending through the semiconductor substrate and electrically coupled to the stack of first semiconductor dies, the second semiconductor die, and the package substrate.
    Type: Application
    Filed: March 2, 2016
    Publication date: June 23, 2016
    Inventors: Jian Li, Steven K. Groothuis, Michel Koopmans
  • Patent number: 9287240
    Abstract: Stacked semiconductor die assemblies with thermal spacers and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a thermally conductive casing defining a cavity, a stack of first semiconductor dies within the cavity, and a second semiconductor die stacked relative to the stack of first dies and carried by a package substrate. The semiconductor die assembly further includes a thermal spacer disposed between the package substrate and the thermally conductive casing. The thermal spacer can include a semiconductor substrate and plurality of conductive vias extending through the semiconductor substrate and electrically coupled to the stack of first semiconductor dies, the second semiconductor die, and the package substrate.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: March 15, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Jian Li, Steven K. Groothuis, Michel Koopmans
  • Publication number: 20160013115
    Abstract: A semiconductor die assembly having high efficiency thermal paths. In one embodiment, the semiconductor die assembly comprises a package support substrate, a first semiconductor die having a peripheral region and a stacking region, and a second semiconductor die attached to the stacking region of the first die such that the peripheral region is lateral of the second die. The assembly further includes a thermal transfer unit having a base attached to the peripheral region of the first die, a cover attached to the base by an adhesive, and a cavity defined by at least cover, wherein the second die is within the cavity. The assembly also includes an underfill in the cavity, wherein a fillet portion of the underfill extends a distance up along a portion of the footing and upward along at least a portion of the base.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 14, 2016
    Inventors: Sameer S. Vadhavkar, Xiao Li, Steven K. Groothuis, Jian Li, Jaspreet S. Gandhi, James M. Derderian, David R. Hembree
  • Publication number: 20160013173
    Abstract: Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 14, 2016
    Inventors: Sameer S. Vadhavkar, Xiao Li, Steven K. Groothuis, Jian Li, Jaspreet S. Gandhi, James M. Derderian, David R. Hembree
  • Publication number: 20150348956
    Abstract: Stacked semiconductor die assemblies with multiple thermal paths and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a plurality of first semiconductor dies arranged in a stack and a second semiconductor die carrying the first semiconductor dies. The second semiconductor die can include a peripheral portion that extends laterally outward beyond at least one side of the first semiconductor dies. The semiconductor die assembly can further include a thermal transfer feature at the peripheral portion of the second semiconductor die. The first semiconductor dies can define a first thermal path, and the thermal transfer feature can define a second thermal path separate from the first semiconductor dies.
    Type: Application
    Filed: August 12, 2015
    Publication date: December 3, 2015
    Inventors: Steven K. Groothuis, Jian Li, Haojun Zhang, Paul A. Silvestri, Xiao Li, Shijan Luo, Luke G. England, Brent Keeth, Jaspreet S. Gandhi
  • Patent number: 9153520
    Abstract: Stacked semiconductor die assemblies with multiple thermal paths and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a plurality of first semiconductor dies arranged in a stack and a second semiconductor die carrying the first semiconductor dies. The second semiconductor die can include a peripheral portion that extends laterally outward beyond at least one side of the first semiconductor dies. The semiconductor die assembly can further include a thermal transfer feature at the peripheral portion of the second semiconductor die. The first semiconductor dies can define a first thermal path, and the thermal transfer feature can define a second thermal path separate from the first semiconductor dies.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 6, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Steven K. Groothuis, Jian Li, Haojun Zhang, Paul A. Silvestri, Xiao Li, Shijian Luo, Luke G. England, Brent Keeth, Jaspreet Gandhi
  • Publication number: 20150279431
    Abstract: Stacked semiconductor die assemblies having memory dies stacked between partitioned logic dies and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a first logic die, a second logic die, and a thermally conductive casing defining an enclosure. The stack of memory dies can be disposed within the enclosure and between the first and second logic dies.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 1, 2015
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Jian Li, Steven K. Groothuis
  • Publication number: 20150170991
    Abstract: Stacked semiconductor die assemblies with thermal spacers and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a thermally conductive casing defining a cavity, a stack of first semiconductor dies within the cavity, and a second semiconductor die stacked relative to the stack of first dies and carried by a package substrate. The semiconductor die assembly further includes a thermal spacer disposed between the package substrate and the thermally conductive casing. The thermal spacer can include a semiconductor substrate and plurality of conductive vias extending through the semiconductor substrate and electrically coupled to the stack of first semiconductor dies, the second semiconductor die, and the package substrate.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 18, 2015
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Jian Li, Steven K. Groothuis, Michel Koopmans
  • Publication number: 20130119528
    Abstract: Stacked semiconductor die assemblies with multiple thermal paths and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a plurality of first semiconductor dies arranged in a stack and a second semiconductor die carrying the first semiconductor dies. The second semiconductor die can include a peripheral portion that extends laterally outward beyond at least one side of the first semiconductor dies. The semiconductor die assembly can further include a thermal transfer feature at the peripheral portion of the second semiconductor die. The first semiconductor dies can define a first thermal path, and the thermal transfer feature can define a second thermal path separate from the first semiconductor dies.
    Type: Application
    Filed: September 13, 2012
    Publication date: May 16, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Steven K. Groothuis, Jian Li, Haojun Zhang, Paul A. Silvestri, Xiao Li, Shijian Luo, Luke G. England, Brent Keeth, Jaspreet Gandhi
  • Patent number: 7601562
    Abstract: The present disclosure suggests various microelectronic component assembly designs and methods for manufacturing microelectronic component assemblies. In one particular implementation, the invention provides a microelectronic component assembly that includes spaced-apart first and second lead frame members. A packaged element is disposed between the lead frame members and attached thereto only by a plurality of elongate, flexible links that permit the packaged element to accommodate thermally induced stresses by floating with respect to the first and second lead frame members.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: October 13, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Steven K. Groothuis, Steven R. Smith, Steve Baughman, Bernard Ball, T. Michael O'Connor
  • Patent number: 7183485
    Abstract: The present disclosure suggests various microelectronic component assembly designs and methods for manufacturing microelectronic component assemblies. In one particular implementation, the invention provides a microelectronic component assembly that includes spaced-apart first and second lead frame members. A packaged element is disposed between the lead frame members and attached thereto only by a plurality of elongate, flexible links that permit the packaged element to accommodate thermally induced stresses by floating with respect to the first and second lead frame members.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: February 27, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Steven K. Groothuis, Steven R. Smith, Steve Baughman, Bernard Ball, T. Michael O'Connor
  • Publication number: 20040177984
    Abstract: The present disclosure suggests various microelectronic component assembly designs and methods for manufacturing microelectronic component assemblies. In one particular implementation, the invention provides a microelectronic component assembly that includes spaced-apart first and second lead frame members. A packaged element is disposed between the lead frame members and attached thereto only by a plurality of elongate, flexible links that permit the packaged element to accommodate thermally induced stresses by floating with respect to the first and second lead frame members.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 16, 2004
    Inventors: Steven K. Groothuis, Steven R. Smith, Steve Baughman, Bernard Ball, T. Michael O'Connor