Patents by Inventor Steven Kimbel

Steven Kimbel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060005761
    Abstract: The present invention provides a methods and system for producing semiconductor grade single crystals that are substantially free of undesirable agglomerated defects. A vacancy/interstial (V/I) boundary simulator analyzes various melt-solid interface shapes to predict a corresponding V/I transition curve for each of the various melt-solid interface shapes. A target melt-solid interface shape corresponding to a substantially flat V/I curve is identified for each of a plurality of axial positions along the length of the crystal. Target operating parameters to achieve each of the identified melt-solid interface shapes are stored in a melt-solid interfaced shape profile. A control system is responsive to the stored profile to generate one or more control signals to control one or more output devices such that the melt-solid interfaced shape substantially follows the target shapes as defined by the profile during crystal growth.
    Type: Application
    Filed: June 6, 2005
    Publication date: January 12, 2006
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Milind Kulkarni, Vijay Nithiananthan, Lee Ferry, JaeWoo Ryu, JinYong Uhm, Steven Kimbel, ChangBum Kim, Joseph Holzer, Richard Schrenker, KangSeon Lee
  • Publication number: 20050150445
    Abstract: The present invention relates to a process for preparing a single crystal silicon ingot, as well as to the ingot or wafer resulting therefrom. The process comprises controlling (i) a growth velocity, v, (ii) an average axial temperature gradient, G0, and (iii) a cooling rate of the crystal from solidification to about 750° C., in order to cause the formation of a segment having a first axially symmetric region extending radially inward from the lateral surface of the ingot wherein silicon self-interstitials are the predominant intrinsic point defect, and a second axially symmetric region extending radially inward from the first and toward the central axis of the ingot.
    Type: Application
    Filed: December 7, 2004
    Publication date: July 14, 2005
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Chang Kim, Steven Kimbel, Jeffrey Libbert, Mohsen Banan
  • Publication number: 20050016443
    Abstract: A method and apparatus for controlling the quenching rate of a monocrystalline ingot pulled from a melt by adjusting one or more post growth processing parameter. A temperature model generates a temperature profile that represents the surface temperature along the length of the ingot at the instant it is pulled from the melt. A first temperature at a particular location along the length of the crystal is determined from the temperature profile. A temperature sensor senses a second temperature at the same particular location. A PLC calculates a quenching rate of the crystal as a function of the first temperature and the second temperature. The PLC generates an error between a target quenching rate and a calculated quenching rate, and one or more post growth process parameters are adjusted as function of the error signal to optimize the quenching rate.
    Type: Application
    Filed: July 21, 2003
    Publication date: January 27, 2005
    Inventors: Zheng Lu, Steven Kimbel