Patents by Inventor Steven Kirch

Steven Kirch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080032297
    Abstract: The methods and apparatus disclosed herein concern nucleic acid sequencing by enhanced Raman spectroscopy. In certain embodiments of the invention, nucleotides are covalently attached to Raman labels before incorporation into a nucleic acid. In other embodiments, unlabeled nucleic acids are used. Exonuclease treatment of the nucleic acid results in the release of labeled or unlabeled nucleotides that are detected by Raman spectroscopy. In alternative embodiments of the invention, nucleotides released from a nucleic acid by exonuclease treatment are covalently cross-linked to nanoparticles and detected by surface enhanced Raman spectroscopy (SERS), surface enhanced resonance Raman spectroscopy (SERRS) and/or coherent anti-Stokes Raman spectroscopy (CARS). Other embodiments of the invention concern apparatus for nucleic acid sequencing.
    Type: Application
    Filed: February 9, 2007
    Publication date: February 7, 2008
    Applicant: INTEL CORPORATION
    Inventors: Xing Su, Andrew Berlin, Selena Chan, Steven Kirch, Tae-Woong Koo, Gabi Neubauer, Valluri Rao, Narayanan Sundararajan, Mineo Yamakawa
  • Publication number: 20070105132
    Abstract: The methods and apparatus disclosed herein are useful for detecting nucleotides, nucleosides, and bases and for nucleic acid sequence determination. The methods involve detection of a nucleotide, nucleoside, or base using surface enhanced Raman spectroscopy (SERS). The detection can be part of a nucleic acid sequencing reaction to detect uptake of a deoxynucleotide triphosphate during a nucleic acid polymerization reaction, such as a nucleic acid sequencing reaction. The nucleic acid sequence of a synthesized nascent strand, and the complementary sequence of the template strand, can be determined by tracking the order of incorporation of nucleotides during the polymerization reaction.
    Type: Application
    Filed: June 5, 2006
    Publication date: May 10, 2007
    Inventors: Andrew Berlin, Steven Kirch, Gabi Neubauer, Valluri Rao, Mineo Yamakawa
  • Publication number: 20070052639
    Abstract: A pixel is driven with pulse width modulation (PWM). A cycle for the PWM signal is divided into a plurality of super-intervals. Each of the super-intervals is divided into a plurality of intervals. An interval index is stored for the pixel. The timing at which the pixel is changed from one state to another is selected based on an enable signal and the stored interval index.
    Type: Application
    Filed: November 9, 2006
    Publication date: March 8, 2007
    Inventors: Thomas Willis, Oleg Rashkovskiy, Steven Kirch
  • Publication number: 20060166243
    Abstract: The methods and apparatus disclosed herein concern nucleic acid sequencing by enhanced Raman spectroscopy. In certain embodiments of the invention, nucleotides are covalently attached to Raman labels before incorporation into a nucleic acid. In other embodiments, unlabeled nucleic acids are used. Exonuclease treatment of the nucleic acid results in the release of labeled or unlabeled nucleotides that are detected by Raman spectroscopy. In alternative embodiments of the invention, nucleotides released from a nucleic acid by exonuclease treatment are covalently cross-linked to nanoparticles and detected by surface enhanced Raman spectroscopy (SERS), surface enhanced resonance Raman spectroscopy (SERRS) and/or coherent anti-Stokes Raman spectroscopy (CARS). Other embodiments of the invention concern apparatus for nucleic acid sequencing.
    Type: Application
    Filed: January 10, 2006
    Publication date: July 27, 2006
    Inventors: Xing Su, Andrew Berlin, Selena Chan, Steven Kirch, Tac-Woong Koo, Gabi Neubauer, Valluri Rao, Narayanan Sundararajan, Mineo Yamakawa
  • Publication number: 20060158443
    Abstract: A spatial light modulator may be adapted to receive bi-directional drive signals. The spatial light modulator may include a plurality of pixel elements having individual first electrodes and a common electrode providing a second electrode for each of the pixel elements. The pixel elements may be adapted to change between a first state and a second state in accordance with signals applied thereto, and the bi-directional drive signals may include at least a first drive signal and a second drive signal. Both drive signals are applied to change the pixel elements from the first state to the second state and from the second state to the first state.
    Type: Application
    Filed: March 17, 2006
    Publication date: July 20, 2006
    Inventors: Steven Kirch, Kenneth Salsman, Thomas Willis, Oleg Rashkovskiy
  • Publication number: 20060063192
    Abstract: The disclosed methods, apparatus and compositions are of use for nucleic acid sequencing. More particularly, the methods and apparatus concern sequencing single molecules of single stranded DNA or RNA by exposing the molecule to exonuclease activity, removing free nucleotides one at a time from one end of the nucleic acid, and identifying the released nucleotides by Raman spectroscopy or FRET.
    Type: Application
    Filed: October 20, 2005
    Publication date: March 23, 2006
    Inventors: Mineo Yamakawa, Andrew Berlin, Steven Kirch, Gabi Neubauer, Valluri Rao
  • Publication number: 20050147980
    Abstract: The methods and apparatus disclosed herein are useful for detecting nucleotides, nucleosides, and bases and for nucleic acid sequence determination. The methods involve detection of a nucleotide, nucleoside, or base using surface enhanced Raman spectroscopy (SERS). The detection can be part of a nucleic acid sequencing reaction to detect uptake of a deoxynucleotide triphosphate during a nucleic acid polymerization reaction, such as a nucleic acid sequencing reaction. The nucleic acid sequence of a synthesized nascent strand, and the complementary sequence of the template strand, can be determined by tracking the order of incorporation of nucleotides during the polymerization reaction.
    Type: Application
    Filed: December 30, 2003
    Publication date: July 7, 2005
    Applicant: Intel Corporation
    Inventors: Andrew Berlin, Steven Kirch, Gabi Neubauer, Valluri Rao, Mineo Yamakawa