Patents by Inventor Steven Kolthammer

Steven Kolthammer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11106433
    Abstract: A method (300) for generating random numbers including: mixing (304) a bright quantum state in a first mode with a vacuum input (15), in a two mode transformation for mixing the first mode and an orthogonal second mode; after mixing, detecting (306) the intensity in the first mode, and the second mode; generating random numbers (312) based on the difference between the detected intensity of the first mode and the second mode; and simultaneously to generating random numbers, certifying the numbers as random, based on the sum of the detected intensity of the first mode and the second mode, wherein certifying confirms that the process by which the random numbers are generated is quantum in origin and so the numbers are random.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: August 31, 2021
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Ian Walmsley, Joshua Nunn, Steven Kolthammer, Gil Triginer Garces, David Drahi
  • Patent number: 10871612
    Abstract: A universal interferometer (100) for coupling modes of electromagnetic radiation according to a transformation has N inputs and N outputs for inputting and outputting N modes of electromagnetic radiation into and from the interferometer. Waveguides (101, 102, 103, 104, 105) pass through the interferometer to connect the N inputs to the N outputs and to carry the N modes of electromagnetic radiation. The waveguides provide crossing points between pairs of waveguides and a reconfigurable beam splitter (107) implements a reconfigurable reflectivity and a reconfigurable phase shift at each crossing point. The waveguides and crossing points are arranged such that each of the N modes of electromagnetic radiation is capable of coupling with each of the other modes of electromagnetic radiation at respective reconfigurable beam splitters.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: December 22, 2020
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: William Clements, Peter Humphreys, Benjamin Metcalf, Steven Kolthammer, Ian Walmsley
  • Publication number: 20200278494
    Abstract: A universal interferometer (100) for coupling modes of electromagnetic radiation according to a transformation has N inputs and N outputs for inputting and outputting N modes of electromagnetic radiation into and from the interferometer. Waveguides (101, 102, 103, 104, 105) pass through the interferometer to connect the N inputs to the N outputs and to carry the N modes of electromagnetic radiation. The waveguides provide crossing points between pairs of waveguides and a reconfigurable beam splitter (107) implements a reconfigurable reflectivity and a reconfigurable phase shift at each crossing point. The waveguides and crossing points are arranged such that each of the N modes of electromagnetic radiation is capable of coupling with each of the other modes of electromagnetic radiation at respective reconfigurable beam splitters.
    Type: Application
    Filed: March 11, 2020
    Publication date: September 3, 2020
    Inventors: William Clements, Peter Humphreys, Benjamin Metcalf, Steven Kolthammer, Ian Walmsley
  • Patent number: 10641954
    Abstract: A universal interferometer (100) for coupling modes of electromagnetic radiation according to a transformation has N inputs and N outputs for inputting and outputting N modes of electromagnetic radiation into and from the interferometer. Waveguides (101, 102, 103, 104, 105) pass through the interferometer to connect the N inputs to the N outputs and to carry the N modes of electromagnetic radiation. The waveguides provide crossing points between pairs of waveguides and a reconfigurable beam splitter (107) implements a reconfigurable reflectivity and a reconfigurable phase shift at each crossing point. The waveguides and crossing points are arranged such that each of the N modes of electromagnetic radiation is capable of coupling with each of the other modes of electromagnetic radiation at respective reconfigurable beam splitters.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: May 5, 2020
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: William Clements, Peter Humphreys, Benjamin Metcalf, Steven Kolthammer, Ian Walmsley
  • Publication number: 20190086610
    Abstract: A universal interferometer (100) for coupling modes of electromagnetic radiation according to a transformation has N inputs and N outputs for inputting and outputting N modes of electromagnetic radiation into and from the interferometer. Waveguides (101, 102, 103, 104, 105) pass through the interferometer to connect the N inputs to the N outputs and to carry the N modes of electromagnetic radiation. The waveguides provide crossing points between pairs of waveguides and a reconfigurable beam splitter (107) implements a reconfigurable reflectivity and a reconfigurable phase shift at each crossing point. The waveguides and crossing points are arranged such that each of the N modes of electromagnetic radiation is capable of coupling with each of the other modes of electromagnetic radiation at respective reconfigurable beam splitters.
    Type: Application
    Filed: February 24, 2017
    Publication date: March 21, 2019
    Inventors: William Clements, Peter Humphreys, Benjamin Metcalf, Steven Kolthammer, Ian Walmsley