Patents by Inventor Steven L. Suib

Steven L. Suib has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11827587
    Abstract: Systems and methods are provided for direct conversion of methane and/or ethane to methanol. The methods can include exposing methane to an oxidant, such as O2, in a solvent at conditions that are supercritical for the solvent while having a temperature of 310° C. or less, or about 300° C. or less, or about 290° C. or less. The solvent can correspond to an electron donor solvent that, when in a supercritical state, can complex with O2. By forming a complex with the O2, the supercritical electron donor solvent can facilitate conversion of alkane to methanol at short residence times while reducing or minimizing further oxidation of the methanol to other products.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: November 28, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Partha Nandi, Steven L. Suib
  • Publication number: 20230322571
    Abstract: Methods for synthesizing and using metal oxide nanomaterials are provided. The methods include heating a solution including large inverse micelles of a metal chelate in a solvent to a temperature greater than the solvent boiling point to form a dried product and calcining the dried product to form the metal oxide nanomaterial.
    Type: Application
    Filed: April 11, 2023
    Publication date: October 12, 2023
    Inventors: Steven L. Suib, Shubhashish Shubhashish
  • Patent number: 11638911
    Abstract: The present disclosure relates to mesoporous metal titanate materials composition. Specifically, the present disclosure relates to a mesoporous metal titanate material composition that is active for multiple reactions, including aromatic alkylation, alkene coupling, alkene cyclization, alkyne oxidation, alcohol dehydrogenation reactions.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: May 2, 2023
    Assignee: UNIVERSITY OF CONNECTICUT
    Inventors: Steven L. Suib, Wimalika Rasangi Kumari Thalgaspitiya, Tharindu M. P. K. Kapuge
  • Patent number: 11492265
    Abstract: The present disclosure relates to tungsten oxide composition. Specifically, the present disclosure relates to mesoporous tungsten oxide composition that is active for multiple reactions, including aromatic alkylation, alkene coupling, alkene cyclization, alkyne oxidation, alcohol dehydrogenation reactions.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: November 8, 2022
    Assignee: UNIVERSITY OF CONNECTICUT
    Inventors: Steven L. Suib, Tharindu M. P. K. Kapuge, Wimalika R. K. Thalgaspitiya
  • Patent number: 11352699
    Abstract: The present disclosure relates to tungsten bronze thin films and method of making the same. Specifically, the present disclosure relates to a thin, homogeneous, highly conducting cubic tungsten bronze film with densely packed micron size particles and the process of making the film.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: June 7, 2022
    Assignee: UNIVERSITY OF CONNECTICUT
    Inventors: Steven L. Suib, Niluka D. Wasalathanthri, David A. Kriz, Madhavi N. Pahalagedara, Wimalika Thalgaspitiya, Dinithi Rathnayake
  • Publication number: 20210331992
    Abstract: Systems and methods are provided for direct conversion of methane and/or ethane to methanol. The methods can include exposing methane to an oxidant, such as O2, in a solvent at conditions that are supercritical for the solvent while having a temperature of 310° C. or less, or about 300° C. or less, or about 290° C. or less. The solvent can correspond to an electron donor solvent that, when in a supercritical state, can complex with O2. By forming a complex with the O2, the supercritical electron donor solvent can facilitate conversion of alkane to methanol at short residence times while reducing or minimizing further oxidation of the methanol to other products.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 28, 2021
    Inventors: Partha Nandi, Steven L. Suib
  • Patent number: 10851036
    Abstract: Systems and methods are provided for direct methane conversion to methanol. The methods can include exposing methane to an oxidant, such as O2, in a solvent at conditions that are substantially supercritical for the solvent while having a temperature of about 310° C. or less, or about 300° C. or less, or about 290° C. or less. The solvent can correspond to an electron donor solvent that, when in a supercritical state, can complex with O2. By forming a complex with the O2, the supercritical electron donor solvent can facilitate conversion of methane to methanol at short residence times while reducing or minimizing further oxidation of the methanol to other products.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: December 1, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Partha Nandi, Steven L. Suib, Sumathy Raman
  • Publication number: 20200370181
    Abstract: The present disclosure relates to tungsten bronze thin films and method of making the same. Specifically, the present disclosure relates to a thin, homogeneous, highly conducting cubic tungsten bronze film with densely packed micron size particles and the process of making the film.
    Type: Application
    Filed: May 23, 2019
    Publication date: November 26, 2020
    Inventors: Steven L. Suib, Niluka D. Wasalathanthri, David A. Kriz, Madhavi N. Pahalagedara, Wimalika Thalgaspitiya, Dinithi Rathnayake
  • Patent number: 10822246
    Abstract: This disclosure provides a unique approach for the synthesis of non-stoichiometric, mesoporous metal oxides with nano-sized crystalline wall. The as-synthesized mesoporous metal oxide is very active and stable (durability >11 h) electocatalyst in both acidic and alkaline conditions. The intrinsic mesoporous metal oxide serves as an electrocatalyst without the assistant of carbon materials, noble metals, or other materials, which are widely used in previously developed systems. The as-synthesized mesoporous metal oxide has large accessible pores (2-50 nm), which are able to facilitate mass transport and charge transfer. The as-synthesized mesoporous metal oxide requires a low overpotential and is oxygen deficient. Oxygen vacancies and mesoporosity served as key factors for excellent performance.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: November 3, 2020
    Assignee: University of Connecticut
    Inventors: Steven L. Suib, Zhu Luo
  • Publication number: 20200261891
    Abstract: The present disclosure relates to mesoporous metal titanate materials composition. Specifically, the present disclosure relates to a mesoporous metal titanate material composition that is active for multiple reactions, including aromatic alkylation, alkene coupling, alkene cyclization, alkyne oxidation, alcohol dehydrogenation reactions.
    Type: Application
    Filed: February 18, 2020
    Publication date: August 20, 2020
    Inventors: Steven L. Suib, Wimalika Rasangi Kumari Thalgaspitiya, Tharindu M. P. K. Kapuge
  • Patent number: 10576462
    Abstract: A process for preparing a mesoporous material, e.g., transition metal oxide, sulfide, selenide or telluride, Lanthanide metal oxide, sulfide, selenide or telluride, a post-transition metal oxide, sulfide, selenide or telluride and metalloid oxide, sulfide, selenide or telluride. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous material. A mesoporous material prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous materials.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: March 3, 2020
    Assignee: University of Connecticut
    Inventors: Steven L. Suib, Altug Suleyman Poyraz, Lei Jin, Chung-hao Kuo
  • Publication number: 20200024152
    Abstract: The present disclosure relates to tungsten oxide composition. Specifically, the present disclosure relates to mesoporous tungsten oxide composition that is active for multiple reactions, including aromatic alkylation, alkene coupling, alkene cyclization, alkyne oxidation, alcohol dehydrogenation reactions.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 23, 2020
    Applicant: University of Connecticut
    Inventors: Steven L. Suib, Tharindu M.P.K. Kapuge, Wimalika R.K. Thalgaspitiya
  • Publication number: 20190185397
    Abstract: Systems and methods are provided for direct methane conversion to methanol. The methods can include exposing methane to an oxidant, such as O2, in a solvent at conditions that are substantially supercritical for the solvent while having a temperature of about 310° C. or less, or about 300° C. or less, or about 290° C. or less. The solvent can correspond to an electron donor solvent that, when in a supercritical state, can complex with O2. By forming a complex with the O2, the supercritical electron donor solvent can facilitate conversion of methane to methanol at short residence times while reducing or minimizing further oxidation of the methanol to other products.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 20, 2019
    Inventors: Partha NANDI, Steven L. SUIB, Sumathy RAMAN
  • Patent number: 10138197
    Abstract: This disclosure describes a new route to acrylate esters via direct catalytic partial oxidation of allyl ether using heterogeneous manganese oxide catalysts. The method involves forming allyl acrylate by contacting allyl ether, where the allyl ether is in solution with a solvent, with one or more oxidants in the presence of a mesoporous manganese oxide (MnOx) catalyst. Oxygen or peroxide can be used as the oxidant. The yield of and selectivity for acrylate ester can be very high, and process efficiency is improved over current processes.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: November 27, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Partha Nandi, Steven L. Suib, Timothy D. Shaffer
  • Patent number: 10081006
    Abstract: The disclosure relates to a method for removing sulfur-containing compounds from a fluid. The method involves adding manganese oxide to the fluid; doping the manganese oxide in situ with iron, cobalt, or combinations thereof to give a doped manganese oxide adsorbent; and contacting the fluid with a selected amount of the doped manganese oxide adsorbent and at a selected temperature and pressure sufficient for the doped manganese oxide adsorbent to preferentially adsorb the sulfur-containing compounds in the fluid. The disclosure also relates to a process for preparing a doped manganese oxide adsorbent, and a doped manganese oxide adsorbent prepared by the process. The disclosure further relates to a method for tuning structural properties (e.g., surface area, pore size and pore volume) of a doped manganese oxide adsorbent.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: September 25, 2018
    Assignee: University of Connecticut
    Inventors: Steven L. Suib, Lakshitha R. Pahalagedara, Chung-hao Kuo
  • Publication number: 20180258023
    Abstract: A process for forming allyl acrylate, comprising contacting allyl ether in solution with a solvent with one or more oxidants in the presence of a mesoporous manganese oxide (MnOx) catalyst.
    Type: Application
    Filed: February 26, 2018
    Publication date: September 13, 2018
    Inventors: Partha NANDI, Steven L. SUIB, Timothy D. SHAFFER
  • Patent number: 10046313
    Abstract: A process for preparing a mesoporous material, e.g., transition metal oxide, sulfide, selenide or telluride, Lanthanide metal oxide, sulfide, selenide or telluride, a post-transition metal oxide, sulfide, selenide or telluride, and metalloid oxide, sulfide, selenide or telluride. The process comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to form the mesoporous material. A mesoporous material prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous materials.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: August 14, 2018
    Assignee: University of Connecticut
    Inventors: Steven L. Suib, Altug Suleyman Poyraz, Lei Jin, Chung-hao Kuo
  • Patent number: 9908103
    Abstract: A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: March 6, 2018
    Assignee: University of Connecticut
    Inventors: Steven L. Suib, Altug Suleyman Poyraz
  • Patent number: 9869222
    Abstract: A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine and collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: January 16, 2018
    Assignee: University of Connecticut
    Inventors: Steven L. Suib, D. A. Saminda Dharmarathna, Lakshitha R. Pahalagedara
  • Publication number: 20170349447
    Abstract: This disclosure provides a unique approach for the synthesis of non-stoichiometric, mesoporous metal oxides with nano-sized crystalline wall. The as-synthesized mesoporous metal oxide is very active and stable (durability>11 h) electocatalyst in both acidic and alkaline conditions. The intrinsic mesoporous metal oxide serves as an electrocatalyst without the assistant of carbon materials, noble metals, or other materials, which are widely used in previously developed systems. The as-synthesized mesoporous metal oxide has large accessible pores (2-50 nm), which are able to facilitate mass transport and charge transfer. The as-synthesized mesoporous metal oxide requires a low overpotential and is oxygen deficient. Oxygen vacancies and mesoporosity served as key factors for excellent performance.
    Type: Application
    Filed: May 19, 2017
    Publication date: December 7, 2017
    Inventor: Steven L. Suib