Patents by Inventor Steven M. Augustine

Steven M. Augustine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8501132
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: August 6, 2013
    Assignee: Cristal USA Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 8465714
    Abstract: Low temperature activity of a vanadium-free selective catalytic reduction catalyst is provided by a mixed metal oxide support containing oxides of titanium and zirconium, the support having a promoter deposited on the surface of the mixed metal oxide support, and further having an active catalyst component deposited over the promoter on the mixed metal oxide support surface. Suitable promoters include oxides of silicon, boron, aluminum, cerium, iron, chromium, cobalt, nickel, copper, tin, silver, niobium, lanthanum, titanium, and combinations thereof. Suitable active catalyst components include oxides of manganese, iron and cerium.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 18, 2013
    Assignee: Cristal USA Inc.
    Inventor: Steven M. Augustine
  • Publication number: 20120308460
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Application
    Filed: December 5, 2011
    Publication date: December 6, 2012
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20120164047
    Abstract: Low temperature activity of a vanadium-free selective catalytic reduction catalyst is provided by a mixed metal oxide support containing oxides of titanium and zirconium, the support having a promoter deposited on the surface of the mixed metal oxide support, and further having an active catalyst component deposited over the promoter on the mixed metal oxide support surface. Suitable promoters include oxides of silicon, boron, aluminum, cerium, iron, chromium, cobalt, nickel, copper, tin, silver, niobium, lanthanum, titanium, and combinations thereof. Suitable active catalyst components include oxides of manganese, iron and cerium.
    Type: Application
    Filed: February 27, 2012
    Publication date: June 28, 2012
    Inventor: Steven M. Augustine
  • Patent number: 8168562
    Abstract: A new method for preparing supported palladium-gold catalysts is disclosed. The method comprises sulfating a titanium dioxide support, calcining the sulfated support, impregnating the calcined support with a palladium salt, a gold salt, and an alkali metal or ammonium compound, calcining the impregnated support, and reducing the calcined support. The resultant supported palladium-gold catalysts have increased activity and stability in the acetoxylation.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: May 1, 2012
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: Steven M. Augustine
  • Patent number: 8148295
    Abstract: Low temperature activity of a vanadium-free selective catalytic reduction catalyst is provided by a mixed metal oxide support containing oxides of titanium and zirconium, the support having a promoter deposited on the surface of the mixed metal oxide support, and further having an active catalyst component deposited over the promoter on the mixed metal oxide support surface. Suitable promoters include oxides of silicon, boron, aluminum, cerium, iron, chromium, cobalt, nickel, copper, tin, silver, niobium, lanthanum, titanium, and combinations thereof. Suitable active catalyst components include oxides of manganese, iron and cerium.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: April 3, 2012
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventor: Steven M. Augustine
  • Patent number: 8075859
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 13, 2011
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20110230338
    Abstract: Low temperature activity and high temperature ammonia selectivity of a vanadium-free selective catalytic reduction catalyst are controlled with a mixed oxide support containing oxides of titanium and zirconium, and a plurality of alternating layers respectively formed of a metal compound and titanium oxide present on the surface of the mixed oxide support. The metal compound is selected from the group consisting of manganese oxide, iron oxide, cerium oxide, tin oxide, and mixtures thereof.
    Type: Application
    Filed: May 27, 2011
    Publication date: September 22, 2011
    Inventor: Steven M. Augustine
  • Patent number: 7968492
    Abstract: Low temperature activity and high temperature ammonia selectivity of a vanadium-free selective catalytic reduction catalyst are controlled with a mixed oxide support containing oxides of titanium and zirconium, and a plurality of alternating layers respectively formed of a metal compound and titanium oxide present on the surface of the mixed oxide support. The metal compound is selected from the group consisting of manganese oxide, iron oxide, cerium oxide, tin oxide, and mixtures thereof.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: June 28, 2011
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventor: Steven M. Augustine
  • Patent number: 7855304
    Abstract: An extrudate comprising an inorganic oxide and a comb-branched polymer is disclosed. The calcined extrudates are useful catalysts or catalyst supports. A palladium-gold catalyst prepared with a calcined titania extrudate of the invention is useful in making vinyl acetate from ethylene, acetic acid, and oxygen or oxygen-containing gas. A calcined transition metal zeolite extrudate of the invention is used as a catalyst in oxidizing organic compounds with hydrogen peroxide. Incorporation of a comb-branched polymer improves the mechanical properties of inorganic oxide extrudates.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: December 21, 2010
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Mark P. Kaminsky, Edward T. Shawl, Steven M. Augustine
  • Patent number: 7842641
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: November 30, 2010
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20100284876
    Abstract: Low temperature activity and high temperature ammonia selectivity of a vanadium-free selective catalytic reduction catalyst are controlled with a mixed oxide support containing oxides of titanium and zirconium, and a plurality of alternating layers respectively formed of a metal compound and titanium oxide present on the surface of the mixed oxide support. The metal compound is selected from the group consisting of manganese oxide, iron oxide, cerium oxide, tin oxide, and mixtures thereof.
    Type: Application
    Filed: May 11, 2009
    Publication date: November 11, 2010
    Inventor: Steven M. Augustine
  • Patent number: 7825204
    Abstract: An extrudate comprising an inorganic oxide and a comb-branched polymer is disclosed. The calcined extrudates are useful catalysts or catalyst supports. A palladium-gold catalyst prepared with a calcined titania extrudate of the invention is useful in making vinyl acetate from ethylene, acetic acid, and oxygen or oxygen-containing gas. A calcined transition metal zeolite extrudate of the invention is used as a catalyst in oxidizing organic compounds with hydrogen peroxide. Incorporation of a comb-branched polymer improves the mechanical properties of inorganic oxide extrudates.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: November 2, 2010
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Mark P. Kaminsky, Edward T. Shawl, Steven M. Augustine
  • Patent number: 7820583
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: October 26, 2010
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 7811968
    Abstract: A method for preparing supported palladium-gold catalysts is disclosed. The method comprises increasing the porosity of a titanium dioxide support, impregnating the support with a palladium salt, a gold salt, and an optional alkali metal or ammonium compound, and reducing the calcined support. The resultant supported palladium-gold catalysts have increased activity in the acetoxylation.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: October 12, 2010
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: Steven M. Augustine
  • Publication number: 20100209324
    Abstract: Low temperature activity of a vanadium-free selective catalytic reduction catalyst is provided by a mixed metal oxide support containing oxides of titanium and zirconium, the support having a promoter deposited on the surface of the mixed metal oxide support, and further having an active catalyst component deposited over the promoter on the mixed metal oxide support surface. Suitable promoters include oxides of silicon, boron, aluminum, cerium, iron, chromium, cobalt, nickel, copper, tin, silver, niobium, lanthanum, titanium, and combinations thereof. Suitable active catalyst components include oxides of manganese, iron and cerium.
    Type: Application
    Filed: May 19, 2009
    Publication date: August 19, 2010
    Inventor: Steven M. Augustine
  • Publication number: 20100099552
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNox catalyst applications.
    Type: Application
    Filed: August 24, 2006
    Publication date: April 22, 2010
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 7696367
    Abstract: The invention is a process for epoxidizing an olefin with hydrogen and oxygen in the presence of a catalyst mixture containing a titanium or vanadium zeolite and a supported catalyst comprising palladium, gold, and an inorganic oxide carrier. Prior to its use in the epoxidation process, the supported catalyst is calcined in the presence of oxygen at a temperature from 450 to 800° C. and reduced in the presence of hydrogen at a temperature greater than 20° C. The process results in significantly reduced alkane byproduct formed by the hydrogenation of olefin.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: April 13, 2010
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Roger A. Grey, Steven M. Augustine
  • Publication number: 20090324472
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Application
    Filed: July 14, 2009
    Publication date: December 31, 2009
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20090325787
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Application
    Filed: July 14, 2009
    Publication date: December 31, 2009
    Inventors: Guoyi Fu, Steven M. Augustine