Patents by Inventor Steven M. Barnard

Steven M. Barnard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11567060
    Abstract: Example nanopore sequencers include a cis well, a trans well, and a nanopore fluidically connecting the cis and trans wells. In one example sequencer, a modified electrolyte (including an electrolyte and a cation complexing agent) is present in the cis well, or the trans well, or in the cis and the trans wells. In another example sequencer, a gel state polyelectrolyte is present in the cis well, or the trans well, or in the cis and the trans wells.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: January 31, 2023
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Rohan N. Akolkar, Jeffrey S. Fisher, Jeffrey G. Mandell, Liangliang Qiang, Steven M. Barnard
  • Publication number: 20210402749
    Abstract: Embodiments of the present application relate to patterned polymer sheets and processes to prepare the same for sequencing applications. In particular, flexible micro- and nano-patterned polymer sheets are prepared and used as a template surface in sequencing reaction and new polish-free methods of forming isolated hydrogel plugs in nanowells are described.
    Type: Application
    Filed: June 8, 2021
    Publication date: December 30, 2021
    Inventors: Bala Murali Venkatesan, Kenny Chen, Steven M. Barnard
  • Publication number: 20210379858
    Abstract: Substrates comprising a functionalizable layer, a polymer layer comprising a plurality of micro-scale or nano-scale patterns, or combinations thereof, and a backing layer and the preparation thereof by using room-temperature UV nano-embossing processes are disclosed. The substrates can be prepared by a roll-to-roll continuous process. The substrates can be used as flow cells, nanofluidic or microfluidic devices for biological molecules analysis.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 9, 2021
    Inventors: M. Shane Bowen, Bala Murali Venkatesan, Steven M. Barnard
  • Patent number: 11173466
    Abstract: An example method includes contacting a substrate coated with a sol-gel material with a stamp that includes a plurality of protruding features. While contacting the coated sol-gel material with the stamp, the example method further includes curing the coated sol-gel material so as to form a patterned sol-gel layer that includes a plurality of wells. The stamp is separated from the patterned sol-gel layer.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: November 16, 2021
    Assignee: Illumina, Inc.
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay
  • Publication number: 20210291135
    Abstract: Provided is an array including a solid support having a surface, the surface having a plurality of wells, the wells containing a gel material, the wells being separated from each other by interstitial regions on the surface, the interstitial regions segregating the gel material in each of the wells from the gel material in other wells of the plurality; and a library of target nucleic acids in the gel material, wherein the gel material in each of the wells comprises a single species of the target nucleic acids of the library. Methods for making and using the array are also provided.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 23, 2021
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay
  • Patent number: 11110683
    Abstract: Substrates comprising a functionalizable layer, a polymer layer comprising a plurality of micro-scale or nano-scale patterns, or combinations thereof, and a backing layer and the preparation thereof by using room-temperature UV nano-embossing processes are disclosed. The substrates can be prepared by a roll-to-roll continuous process. The substrates can be used as flow cells, nanofluidic or microfluidic devices for biological molecules analysis.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: September 7, 2021
    Assignee: ILLUMINA, INC.
    Inventors: M. Shane Bowen, Bala Murali Venkatesan, Steven M. Barnard
  • Publication number: 20200318102
    Abstract: The invention provides a method of selecting a representational sample of nucleic acid sequences from a complex mixture. The method includes: (a) contacting a complex mixture of nucleic acids under conditions sufficient for hybridization with a population of capture probes complementary to one or more nucleic acids comprising a predetermined portion of the sequence collectively present in the complex mixture to form hybridization complexes of the one or more nucleic acids with the population of probes, the population of capture probes being attached to a solid support, and (b) removing unhybridized nucleic acids to select a representational sample of nucleic acids having a complexity of less than 10% but more than 0.
    Type: Application
    Filed: December 13, 2019
    Publication date: October 8, 2020
    Applicant: ILLUMINA, INC.
    Inventors: John R. Stuelpnagel, David L. Barker, Jorge Velarde, Steven M. Barnard, Michael Graige
  • Publication number: 20200282693
    Abstract: Substrates comprising a functionalizable layer, a polymer layer comprising a plurality of micro-scale or nano-scale patterns, or combinations thereof, and a backing layer and the preparation thereof by using room-temperature UV nano-embossing processes are disclosed. The substrates can be prepared by a roll-to-roll continuous process. The substrates can be used as flow cells, nanofluidic or microfluidic devices for biological molecules analysis.
    Type: Application
    Filed: May 21, 2020
    Publication date: September 10, 2020
    Inventors: M. Shane Bowen, Bala Murali Venkatesan, Steven M. Barnard
  • Patent number: 10682829
    Abstract: Substrates comprising a functionalizable layer, a polymer layer comprising a plurality of micro-scale or nano-scale patterns, or combinations thereof, and a backing layer and the preparation thereof by using room-temperature UV nano-embossing processes are disclosed. The substrates can be prepared by a roll-to-roll continuous process. The substrates can be used as flow cells, nanofluidic or microfluidic devices for biological molecules analysis.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: June 16, 2020
    Assignee: ILLUMINA, INC.
    Inventors: M. Shane Bowen, Bala Murali Venkatesan, Steven M. Barnard
  • Patent number: 10668444
    Abstract: Provided is an array including a solid support having a surface, the surface having a plurality of wells, the wells containing a gel material, the wells being separated from each other by interstitial regions on the surface, the interstitial regions segregating the gel material in each of the wells from the gel material in other wells of the plurality; and a library of target nucleic acids in the gel material, wherein the gel material in each of the wells comprises a single species of the target nucleic acids of the library. Methods for making and using the array are also provided.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: June 2, 2020
    Assignee: ILLUMINA, INC.
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay
  • Publication number: 20200132664
    Abstract: Example nanopore sequencers include a cis well, a trans well, and a nanopore fluidically connecting the cis and trans wells. In one example sequencer, a modified electrolyte (including an electrolyte and a cation complexing agent) is present in the cis well, or the trans well, or in the cis and the trans wells. In another example sequencer, a gel state polyelectrolyte is present in the cis well, or the trans well, or in the cis and the trans wells.
    Type: Application
    Filed: June 19, 2018
    Publication date: April 30, 2020
    Inventors: Boyan Boyanov, Rohan N. Akolkar, Jeffrey S. Fisher, Jeffrey G. Mandell, Liangliang Qiang, Steven M. Barnard
  • Patent number: 10538759
    Abstract: The invention provides a method of selecting a representational sample of nucleic acid sequences from a complex mixture. The method includes: (a) contacting a complex mixture of nucleic acids under conditions sufficient for hybridization with a population of capture probes complementary to one or more nucleic acids comprising a predetermined portion of the sequence collectively present in the complex mixture to form hybridization complexes of the one or more nucleic acids with the population of probes, the population of capture probes being attached to a solid support, and (b) removing unhybridized nucleic acids to select a representational sample of nucleic acids having a complexity of less than 10% but more than 0.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: January 21, 2020
    Assignee: Illumina, Inc.
    Inventors: John R. Stuelpnagel, David L. Barker, Jorge Velarde, Steven M. Barnard, Michael Graige
  • Publication number: 20190046943
    Abstract: An example method includes contacting a substrate coated with a sol-gel material with a stamp that includes a plurality of protruding features. While contacting the coated sol-gel material with the stamp, the example method further includes curing the coated sol-gel material so as to form a patterned sol-gel layer that includes a plurality of wells. The stamp is separated from the patterned sol-gel layer.
    Type: Application
    Filed: August 30, 2018
    Publication date: February 14, 2019
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay
  • Publication number: 20180207920
    Abstract: Embodiments of the present application relate to patterned polymer sheets and processes to prepare the same for sequencing applications. In particular, flexible micro- and nano-patterned polymer sheets are prepared and used as a template surface in sequencing reaction and new polish-free methods of forming isolated hydrogel plugs in nanowells are described.
    Type: Application
    Filed: July 13, 2016
    Publication date: July 26, 2018
    Inventors: Bala Murali Venkatesan, Kenny Chen, Steven M. Barnard
  • Publication number: 20180073016
    Abstract: The invention provides a method of selecting a representational sample of nucleic acid sequences from a complex mixture. The method includes: (a) contacting a complex mixture of nucleic acids under conditions sufficient for hybridization with a population of capture probes complementary to one or more nucleic acids comprising a predetermined portion of the sequence collectively present in the complex mixture to form hybridization complexes of the one or more nucleic acids with the population of probes, the population of capture probes being attached to a solid support, and (b) removing unhybridized nucleic acids to select a representational sample of nucleic acids having a complexity of less than 10% but more than 0.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 15, 2018
    Inventors: John R. Stuelpnagel, David L. Barker, Jorge Velarde, Steven M. Barnard, Michael Graige
  • Publication number: 20170175109
    Abstract: The invention provides a method of selecting a representational sample of nucleic acid sequences from a complex mixture. The method includes: (a) contacting a complex mixture of nucleic acids under conditions sufficient for hybridization with a population of capture probes complementary to one or more nucleic acids comprising a predetermined portion of the sequence collectively present in the complex mixture to form hybridization complexes of the one or more nucleic acids with the population of probes, the population of capture probes being attached to a solid support, and (b) removing unhybridized nucleic acids to select a representational sample of nucleic acids having a complexity of less than 10% but more than 0.
    Type: Application
    Filed: March 6, 2017
    Publication date: June 22, 2017
    Inventors: John R. Stuelpnagel, David L. Barker, Jorge Velarde, Jr., Steven M. Barnard, Michael Graige
  • Publication number: 20170136434
    Abstract: Provided is an array including a solid support having a surface, the surface having a plurality of wells, the wells containing a gel material, the wells being separated from each other by interstitial regions on the surface, the interstitial regions segregating the gel material in each of the wells from the gel material in other wells of the plurality; and a library of target nucleic acids in the gel material, wherein the gel material in each of the wells comprises a single species of the target nucleic acids of the library. Methods for making and using the array are also provided.
    Type: Application
    Filed: November 22, 2016
    Publication date: May 18, 2017
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay
  • Patent number: 9587273
    Abstract: The invention provides a method of selecting a representational sample of nucleic acid sequences from a complex mixture. The method includes: (a) contacting a complex mixture of nucleic acids under conditions sufficient for hybridization with a population of capture probes complementary to one or more nucleic acids comprising a predetermined portion of the sequence collectively present in the complex mixture to form hybridization complexes of the one or more nucleic acids with the population of probes, the population of capture probes being attached to a solid support, and (b) removing unhybridized nucleic acids to select a representational sample of nucleic acids having a complexity of less than 10% but more than 0.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: March 7, 2017
    Assignee: ILLUMINA, INC.
    Inventors: John R. Stuelpnagel, David L. Barker, Jorge Velarde, Jr., Steven M. Barnard, Michael Graige
  • Patent number: 9512422
    Abstract: Provided is an array including a solid support having a surface, the surface having a plurality of wells, the wells containing a gel material, the wells being separated from each other by interstitial regions on the surface, the interstitial regions segregating the gel material in each of the wells from the gel material in other wells of the plurality; and a library of target nucleic acids in the gel material, wherein the gel material in each of the wells comprises a single species of the target nucleic acids of the library. Methods for making and using the array are also provided.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: December 6, 2016
    Assignee: Illumina, Inc.
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay
  • Publication number: 20160251706
    Abstract: The invention provides a method of selecting a representational sample of nucleic acid sequences from a complex mixture. The method includes: (a) contacting a complex mixture of nucleic acids under conditions sufficient for hybridization with a population of capture probes complementary to one or more nucleic acids comprising a predetermined portion of the sequence collectively present in the complex mixture to form hybridization complexes of the one or more nucleic acids with the population of probes, the population of capture probes being attached to a solid support, and (b) removing unhybridized nucleic acids to select a representational sample of nucleic acids having a complexity of less than 10% but more than 0.
    Type: Application
    Filed: May 6, 2016
    Publication date: September 1, 2016
    Applicant: Illumina, Inc.
    Inventors: John R. Stuelpnagel, David L. Barker, Jorge Velarde, JR., Steven M. BaRNARD, Michael Graige