Patents by Inventor Steven M. Clements

Steven M. Clements has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10211790
    Abstract: A circuit including: input and output nodes and first and second feedback nodes; a first input amplifier having an input connected to the input node and an output connected to the first feedback node; a second input amplifier having an input connected to the input node and an output connected to the second feedback node; a capacitor connecting the first feedback node and the second feedback node; an amplifier having an input connected to the first feedback node and an output connected to the output node; a base feedback amplifier with an input connected to the output node and an output connected to the first feedback node; a tunable feedback amplifier with an input connected to the output node and an output connected to the second feedback node; and a tuning circuit for varying a transconductance of the tunable feedback circuit and operational frequency of the peaking amplifier circuit.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: February 19, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Michael Chen, Steven M. Clements, Mohak Chhabra, Steven E. Mikes, Hayden C. Cranford, Jr.
  • Publication number: 20180278218
    Abstract: A circuit including: input and output nodes and first and second feedback nodes; a first input amplifier having an input connected to the input node and an output connected to the first feedback node; a second input amplifier having an input connected to the input node and an output connected to the second feedback node; a capacitor connecting the first feedback node and the second feedback node; an amplifier having an input connected to the first feedback node and an output connected to the output node; a base feedback amplifier with an input connected to the output node and an output connected to the first feedback node; a tunable feedback amplifier with an input connected to the output node and an output connected to the second feedback node; and a tuning circuit for varying a transconductance of the tunable feedback circuit and operational frequency of the peaking amplifier circuit.
    Type: Application
    Filed: October 23, 2017
    Publication date: September 27, 2018
    Inventors: Michael Chen, Steven M. Clements, Mohak Chhabra, Steven E. Mikes, Hayden C. Cranford, JR.
  • Patent number: 10033334
    Abstract: The disclosure is directed to a tunable peaking amplifier circuit including: an input node, an output node and a feedback node; a first input amplifier having an input connected to the input node and an output connected to the feedback node; a second input amplifier having an input connected to the input node; a coupling capacitor connected between an output of the second input amplifier and the feedback node; an amplifier having an input connected to the feedback node and an output connected to the output node; and a feedback circuit having an input coupled to the output node and an output connected to the feedback node, the feedback circuit including a tuning circuit for varying a transconductance of the feedback circuit to adjust an operational frequency of the peaking amplifier circuit.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: July 24, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Michael Chen, Steven M. Clements, Mohak Chhabra, Steven E. Mikes, Hayden C. Cranford, Jr.
  • Patent number: 9960738
    Abstract: A tunable peaking amplifier circuit including: an input node, an output node, and a feedback node; a first input amplifier having an input connected to the input node and an output connected to the feedback node; a second input amplifier having an input connected to the input node; a coupling capacitor connected between an output of the second input amplifier and the feedback node; an amplifier having an input connected to the feedback node and an output connected to the output node; a feedback circuit including: a base feedback amplifier having an input connected to the output node and an output connected to the feedback node; and a tunable feedback amplifier having an input connected to the output node and an output connected to the feedback node; and a tuning circuit for varying a transconductance of the feedback circuit to adjust an operational frequency of the peaking amplifier circuit.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: May 1, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Michael Chen, Steven M. Clements, Mohak Chhabra, Steven E. Mikes, Hayden C. Cranford, Jr.
  • Patent number: 9853612
    Abstract: A circuit including: input and output nodes and first and second feedback nodes; a first input amplifier having an input connected to the input node and an output connected to the first feedback node; a second input amplifier having an input connected to the input node and an output connected to the second feedback node; a capacitor connecting the first feedback node and the second feedback node; an amplifier having an input connected to the first feedback node and an output connected to the output node; a base feedback amplifier with an input connected to the output node and an output connected to the first feedback node; a tunable feedback amplifier with an input connected to the output node and an output connected to the second feedback node; and a tuning circuit for varying a transconductance of the tunable feedback circuit and operational frequency of the peaking amplifier circuit.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: December 26, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Michael Chen, Steven M. Clements, Mohak Chhabra, Steven E. Mikes, Hayden C. Cranford, Jr.
  • Patent number: 9542354
    Abstract: Methods and deserializer circuits are provided for generating a parallel data signal by converting serial data of a serial data signal to parallel data. In a particular embodiment, the deserializer circuit includes a logic divider configured to generate based on a half rate clock, a quarter rate clock, a mode rate clock, and a selection control signal. The deserializer circuit includes a first set of latches for sampling and aligning the serial data from the serial data signal into the deserializer circuit based on the half rate clock. The deserializer circuit also includes a shift register including a second set of latches configured to latch the output of the first set of latches based on the quarter rate clock generated by the logic divider. In the particular embodiment, the deserializer circuit also includes multiplexer logic configured to output the parallel data signal including latching data from the shift register.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: January 10, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Steven M. Clements, John F. Ewen, Giri N. K. Rangan, Shridha Tyagi, Arun R. Umamaheswaran
  • Publication number: 20160019182
    Abstract: Methods and deserializer circuits are provided for generating a parallel data signal by converting serial data of a serial data signal to parallel data. In a particular embodiment, the deserializer circuit includes a logic divider configured to generate based on a half rate clock, a quarter rate clock, a mode rate clock, and a selection control signal. The deserializer circuit includes a first set of latches for sampling and aligning the serial data from the serial data signal into the deserializer circuit based on the half rate clock. The deserializer circuit also includes a shift register including a second set of latches configured to latch the output of the first set of latches based on the quarter rate clock generated by the logic divider. In the particular embodiment, the deserializer circuit also includes multiplexer logic configured to output the parallel data signal including latching data from the shift register.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 21, 2016
    Inventors: STEVEN M. CLEMENTS, JOHN F. EWEN, GIRI N.K. RANGAN, SHRIDHA TYAGI, ARUN R. UMAMAHESWARAN
  • Patent number: 9184948
    Abstract: A Decision Feedback Equalizer (‘DFE’) that includes: a plurality of input signal lines comprising at least one data signal line and a plurality of power control signal lines; at least one output signal line; and a plurality of independently-controlled isolated power domains, where each independently-controlled isolated power domain is coupled to a corresponding one of the power control signal lines, each of the power control signal lines configured to transmit a power control signal to the independently-controlled isolated power domain dynamically, and each independently-controlled isolated power domain selectively consumes power in response to the power control signal, each independently-controlled isolated power domain configured to be dynamically powered up or powered down without impacting signal processing operations.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: November 10, 2015
    Assignee: GLOBALFOUNDRIES U.S. 2 LLC
    Inventors: Minhan Chen, Steven M. Clements, Carrie E. Cox, Todd M. Rasmus
  • Publication number: 20150099285
    Abstract: The present invention relates to systems and methods for producing energy. Specifically, the present invention relates to systems and methods for producing energy, such as energy in the form of electricity, and fuels, such as, for example, biodiesel and/or cellulosic ethanol in a small scale energy center. Moreover, the systems and methods of the present invention provide for recovery of materials, such as in soil production and/or recycling.
    Type: Application
    Filed: August 18, 2014
    Publication date: April 9, 2015
    Inventors: Steven M. Clements, Richard L. Clements
  • Patent number: 8989313
    Abstract: Methods and apparatuses for adaptable receiver detection are provided. Embodiments include providing, by receiver detection circuitry at a transmitter coupled to a communication link, a voltage to the communication link; determining, by the receiver detection circuitry, a rise time corresponding to a rising edge change of the voltage on the communication link; determining, by the receiver detection circuitry, a fall time corresponding to a falling edge change of the voltage on the communication link; and determining, by the receiver detection circuitry, whether the rise time and the fall time are consistent with the transmitter being coupled through the communication link to a remote receiver.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: John J. Bergkvist, Jr., Steven M. Clements, Carrie E. Cox, Hayden C. Cranford, Jr., Todd E. Leonard
  • Publication number: 20140355661
    Abstract: A Decision Feedback Equalizer (DFE) that includes: a plurality of input signal lines comprising at least one data signal line and a plurality of power control signal lines; at least one output signal line; and a plurality of independently-controlled isolated power domains, where each independently-controlled isolated power domain is coupled to a corresponding one of the power control signal lines, each of the power control signal lines configured to transmit a power control signal to the independently-controlled isolated power domain dynamically, and each independently-controlled isolated power domain selectively consumes power in response to the power control signal, each independently-controlled isolated power domain configured to be dynamically powered up or powered down without impacting signal processing operations.
    Type: Application
    Filed: May 28, 2013
    Publication date: December 4, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Minhan CHEN, Steven M. CLEMENTS, Carrie E. COX, Todd M. RASMUS
  • Publication number: 20140254650
    Abstract: Methods and apparatuses for adaptable receiver detection are provided. Embodiments include providing, by receiver detection circuitry at a transmitter coupled to a communication link, a voltage to the communication link; determining, by the receiver detection circuitry, a rise time corresponding to a rising edge change of the voltage on the communication link; determining, by the receiver detection circuitry, a fall time corresponding to a falling edge change of the voltage on the communication link; and determining, by the receiver detection circuitry, whether the rise time and the fall time are consistent with the transmitter being coupled through the communication link to a remote receiver.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John J. Bergkvist, JR., Steven M. Clements, Carrie E. Cox, Hayden C. Cranford, JR., Todd E. Leonard
  • Patent number: 8704583
    Abstract: Capacitive level-shifting circuits and methods are provided for adding DC offsets to the output of a current-integrating amplifier. For example, a current-integrating amplifier includes an input amplifier stage and an output offset circuit. The input amplifier stage includes an input node, a first output node, and a first switch connected between the first output node and a power supply node. The output offset circuit is connected to the first output node of the input amplifier stage and to a second output node of the current-integrating amplifier. The output offset circuit includes a first series capacitor coupled between the first output node of the input amplifier stage and the second output node of the current-integrating amplifier. The output offset circuit switchably connects a bias voltage to the second output node and charges the first series capacitor to add a DC offset to the second output node of the current-integrating amplifier.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: April 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: John F. Bulzacchelli, Steven M. Clements, Sergey V. Rylov
  • Publication number: 20130214865
    Abstract: Capacitive level-shifting circuits and methods are provided for adding DC offsets to the output of a current-integrating amplifier. For example, a current-integrating amplifier includes an input amplifier stage and an output offset circuit. The input amplifier stage includes an input node, a first output node, and a first switch connected between the first output node and a power supply node. The output offset circuit is connected to the first output node of the input amplifier stage and to a second output node of the current-integrating amplifier. The output offset circuit includes a first series capacitor coupled between the first output node of the input amplifier stage and the second output node of the current-integrating amplifier. The output offset circuit switchably connects a bias voltage to the second output node and charges the first series capacitor to add a DC offset to the second output node of the current-integrating amplifier.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 22, 2013
    Applicant: International Business Machines Corporation
    Inventors: John F. Bulzacchelli, Steven M. Clements, Sergey V. Rylov
  • Patent number: 8139700
    Abstract: A system and method for closed loop clock correction includes adjusting two or more input signals comprising at least one in-phase clock and one quadrature clock, and applying adjusted quadrature clock signals to a device capable of generating a 4-quadrant interpolated output clock phase. An interpolated output clock phase is delayed to form a clock for a measurement device. Two or more adjusted input signals are measured on a measurement device over a range of interpolated output clock phases. Errors are determined on the in-phase clock and the quadrature clock using sampled information from the measurement device. The in-phase clock and the quadrature clock are adapted using determined error information.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Troy J. Beukema, Steven M. Clements, Chun-Ming Hsu, William R. Kelly, Elizabeth M. May, Sergey V. Rylov
  • Publication number: 20100329403
    Abstract: A system and method for closed loop clock correction includes adjusting two or more input signals comprising at least one in-phase clock and one quadrature clock, and applying adjusted quadrature clock signals to a device capable of generating a 4-quadrant interpolated output clock phase. An interpolated output clock phase is delayed to form a clock for a measurement device. Two or more adjusted input signals are measured on a measurement device over a range of interpolated output clock phases. Errors are determined on the in-phase clock and the quadrature clock using sampled information from the measurement device. The in-phase clock and the quadrature clock are adapted using determined error information.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Troy J. Beukema, Steven M. Clements, Chun-Ming Hsu, William R. Kelly, Elizabeth M. May, Sergey V. Rylov
  • Patent number: 7769057
    Abstract: A high speed serial link structure and method are provided, comprising a data driver and a replica driver structure, the replica driver structure comprising a replica driver, a calibration engine and a peak level detector. The calibration engine compares a peak level detector output to a reference value and responsively performs a data driver adjustment, wherein the data driver adjustment comprises at least one of a driver biasing adjustment, a driver intermediate stage bandwidth adjustment and a driver equalization setting adjustment. In some embodiments, the calibration engine incorporates a comparator and a digital state machine; in other embodiments, it incorporates an analog operational amplifier.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: August 3, 2010
    Assignee: International Business Machines Corporation
    Inventors: Steven M. Clements, Carrie E. Cox, Hayden C. Cranford, Jr.
  • Patent number: 7750744
    Abstract: A method, system, and circuit device for interfacing single-ended charge pump output to differential voltage controlled oscillator (VCO) inputs to yield low duty cycle distortion from a VCO. A single-ended charge pump output is utilized to create a compliment differential voltage leg, while optimally centering the common-mode voltage level to interface to a current starved ring VCO. A replica of the VCO's current starved delay cell is implemented along with negative feedback to generate the compliment differential voltage leg. The single-ended charge pump output is coupled to a first transistor, while a second transistor is coupled to the output of an error amplifier. The error amplifier utilizes negative feedback to bias the second transistor, forcing the output of the replica circuit to equal a reference voltage.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: July 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Steven M. Clements, Todd M. Rasmus
  • Patent number: 7705640
    Abstract: A method, system, and circuit design product for setting the common-mode voltage level of a charge pump to yield low duty cycle distortion from a voltage controlled oscillator (VCO). Differential charge pumps utilize common-mode feedback (CMF) networks to control the common-mode voltage level. A replica circuit of a current starved delay cell from a VCO replaces the unity gain buffering circuit within a common-mode feedback circuit. Inserting the current starved delay cell replica circuit permits adequate negative feedback compensation, while allowing a phase locked loop (PLL) to operate with a wide bandwidth. As a result of utilizing the replica circuit of a current starved delay cell from a VCO, the common-mode voltage level is optimally centered to interface with the VCO, thereby minimizing duty cycle distortion.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: April 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Steven M. Clements, Todd M. Rasmus
  • Patent number: 7698802
    Abstract: A method for manufacturing a calibration device for an active circuit on a chip, comprises: providing an active circuit that is capable of exhibiting a desired electrical characteristic; and providing a calibration mechanism on-chip with the active circuit. The calibration mechanism generates a control output and comprises a device under test (DUT) configured as a replica of at least one segment of the active circuit, and which generates a test output that causes finite adjustments to the control output, based on a comparison of the electrical characteristics exhibited by the DUT with a known electrical characteristic. The method further comprises: attaching to each control input terminal of the active circuit a corresponding control output from the calibration mechanism. The control output of the calibration mechanism dynamically adjusts control input applied to devices of the active circuit to force the active circuit to exhibit the desired electrical characteristic.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: April 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Steven M. Clements, William P. Cornwell, Carrie E. Cox, Hayden C. Cranford, Jr., Vernon R. Norman