Patents by Inventor Steven M. Coleman

Steven M. Coleman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7957439
    Abstract: A laser diode package includes a laser diode, a cooler, and a metallization layer. The laser diode is used for converting electrical energy to optical energy. The cooler receives and routes a coolant from a cooling source via internal channels. The cooler includes a plurality of ceramic sheets and a highly thermally-conductive sheet. The ceramic sheets are fused together and the thermally-conductive sheet is attached to a top ceramic sheet of the plurality of ceramic sheets. The metallization layer has at least a portion on the thermally-conductive sheet. The portion is electrically coupled to the laser diode for conducting the electrical energy to the laser diode.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: June 7, 2011
    Assignee: Northrop Grumman Space & Missions
    Inventors: Edward F. Stephens, Steven M. Coleman
  • Publication number: 20100074285
    Abstract: A laser diode package includes a laser diode, a cooler, and a metallization layer. The laser diode is used for converting electrical energy to optical energy. The cooler receives and routes a coolant from a cooling source via internal channels. The cooler includes a plurality of ceramic sheets and a highly thermally-conductive sheet. The ceramic sheets are fused together and the thermally-conductive sheet is attached to a top ceramic sheet of the plurality of ceramic sheets. The metallization layer has at least a portion on the thermally-conductive sheet. The portion is electrically coupled to the laser diode for conducting the electrical energy to the laser diode.
    Type: Application
    Filed: December 1, 2009
    Publication date: March 25, 2010
    Applicant: Northrop Grumman Space & Mission Systems Corp.
    Inventors: Edward F. Stephens, Steven M. Coleman
  • Patent number: 7656915
    Abstract: A laser diode package includes a laser diode, a cooler, and a metallization layer. The laser diode is used for converting electrical energy to optical energy. The cooler receives and routes a coolant from a cooling source via internal channels. The cooler includes a plurality of ceramic sheets and a highly thermally-conductive sheet. The ceramic sheets are fused together and the thermally-conductive sheet is attached to a top ceramic sheet of the plurality of ceramic sheets. The metallization layer has at least a portion on the thermally-conductive sheet. The portion is electrically coupled to the laser diode for conducting the electrical energy to the laser diode.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: February 2, 2010
    Assignee: Northrop Grumman Space & Missions Systems Corp.
    Inventors: Steven M. Coleman, Edward F. Stephens
  • Publication number: 20080056314
    Abstract: A system includes a laser-diode bar comprising an emitting surface and a reflective surface opposing the emitting surface. The laser-diode bar includes a positive-side surface and a negative-side surface opposing the positive-side surface for conducting electrical energy through laser-diode bar. The system also includes a heat sink thermally coupled to the laser-diode bar. The heat sink is made of a material selected from the group consisting of Skeleton-cemented diamond and diamond-copper composite. The system also includes a heat spreader interposed between the heat sink and the laser-diode bar. The heat spreader includes a first surface thermally interfacing the positive-side surface of the laser-diode bar. The first surface is substantially smoother than a surface on the heat sink and includes an electrically conductive material for conducting the electrical energy into the laser-diode bar.
    Type: Application
    Filed: August 31, 2006
    Publication date: March 6, 2008
    Inventors: Steven M. Coleman, Edward F. Stephens
  • Publication number: 20080025357
    Abstract: A laser diode package includes a laser diode, a cooler, and a metallization layer. The laser diode is used for converting electrical energy to optical energy. The cooler receives and routes a coolant from a cooling source via internal channels. The cooler includes a plurality of ceramic sheets and a highly thermally-conductive sheet. The ceramic sheets are fused together and the thermally-conductive sheet is attached to a top ceramic sheet of the plurality of ceramic sheets. The metallization layer has at least a portion on the thermally-conductive sheet. The portion is electrically coupled to the laser diode for conducting the electrical energy to the laser diode.
    Type: Application
    Filed: July 26, 2006
    Publication date: January 31, 2008
    Inventors: Steven M. Coleman, Edward F. Stephens
  • Patent number: 6663793
    Abstract: The present invention relates to a method for producing a low temperature 0-3 composite material, comprising the steps of providing a mixture, wherein the mixture comprises a liquid phase and a particulate phase and wherein the liquid phase comprises a reactive metal alkoxide; depositing the mixture on to a plastic substrate; and consolidating the mixture to provide a 0-3 composite material, wherein the 0-3 composite material is suitable for use as an electronic component.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: December 16, 2003
    Assignee: Sciperio, Inc.
    Inventors: Robert L. Parkhill, Steven M. Coleman, Edward T. Knobbe
  • Publication number: 20010046933
    Abstract: Sol-gel-derived “0-3 composite” ceramics are provided for application to electronics components directly written onto low-temperature substrates. The 0-3 composite materials are prepared from a mixture of liquid-phase and solid-phase constituents, as are the pastes conventionally used to prepare thick-film materials for the electronics industry. The prepared 0-3 composites exhibit several advantages, including substantial reductions in (1) processing temperatures, (2) solvent concentrations, and (3) organic post-processing-residual concentrations. In addition, the rapid removal of solvent during application is compatible with such rapid prototyping methods as laser densification. The 0-3 composites may be deposited onto plastic substrates while still meeting expected performance standards. Therefore, the direct writing of electronics components onto such low-temperature substrates as plastic may be achieved using sol-gel-based 0-3 composites.
    Type: Application
    Filed: February 7, 2001
    Publication date: November 29, 2001
    Inventors: Robert L. Parkhill, Steven M. Coleman, Edward T. Knobbe