Patents by Inventor Steven M. Conolly

Steven M. Conolly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103103
    Abstract: A pulsed magnetic particle imaging system includes a magnetic field generating system that includes at least one magnet, the magnetic field generating system providing a spatially structured magnetic field within an observation region of the magnetic particle imaging system such that the spatially structured magnetic field will have a field-free region (FFR) for an object under observation having a magnetic nanoparticle tracer distribution therein. The pulsed magnetic particle imaging system also includes a pulsed excitation system arranged proximate the observation region, the pulsed excitation system includes an electromagnet and a pulse sequence generator electrically connected to the electromagnet to provide an excitation waveform to the electromagnet, wherein the electromagnet when provided with the excitation waveform generates an excitation magnetic field within the observation region to induce an excitation signal therefrom by at least one of shifting a location or condition of the FFR.
    Type: Application
    Filed: June 5, 2023
    Publication date: March 28, 2024
    Applicant: The Regents of the University of California
    Inventors: Steven M. Conolly, Patrick W. Goodwill, Daniel Hensley, Zhi Wei Tay, Bo Zheng
  • Patent number: 11709212
    Abstract: A pulsed magnetic particle imaging system includes a magnetic field generating system that includes at least one magnet, the magnetic field generating system providing a spatially structured magnetic field within an observation region of the magnetic particle imaging system such that the spatially structured magnetic field will have a field-free region (FFR) for an object under observation having a magnetic nanoparticle tracer distribution therein. The pulsed magnetic particle imaging system also includes a pulsed excitation system arranged proximate the observation region, the pulsed excitation system includes an electromagnet and a pulse sequence generator electrically connected to the electromagnet to provide an excitation waveform to the electromagnet, wherein the electromagnet when provided with the excitation waveform generates an excitation magnetic field within the observation region to induce an excitation signal therefrom by at least one of shifting a location or condition of the FFR.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: July 25, 2023
    Assignee: The Regents of the University of California
    Inventors: Steven M. Conolly, Patrick W. Goodwill, Daniel Hensley, Zhi Wei Tay, Bo Zheng
  • Publication number: 20220221537
    Abstract: A pulsed magnetic particle imaging system includes a magnetic field generating system that includes at least one magnet, the magnetic field generating system providing a spatially structured magnetic field within an observation region of the magnetic particle imaging system such that the spatially structured magnetic field will have a field-free region (FFR) for an object under observation having a magnetic nanoparticle tracer distribution therein. The pulsed magnetic particle imaging system also includes a pulsed excitation system arranged proximate the observation region, the pulsed excitation system includes an electromagnet and a pulse sequence generator electrically connected to the electromagnet to provide an excitation waveform to the electromagnet, wherein the electromagnet when provided with the excitation waveform generates an excitation magnetic field within the observation region to induce an excitation signal therefrom by at least one of shifting a location or condition of the FFR.
    Type: Application
    Filed: January 21, 2022
    Publication date: July 14, 2022
    Applicant: The Regents of the University of California
    Inventors: Steven M. Conolly, Patrick W. Goodwill, Daniel Hensley, Zhi Wei Tay, Bo Zheng
  • Patent number: 11231469
    Abstract: A pulsed magnetic particle imaging system includes a magnetic field generating system that includes at least one magnet, the magnetic field generating system providing a spatially structured magnetic field within an observation region of the magnetic particle imaging system such that the spatially structured magnetic field will have a field-free region (FFR) for an object under observation having a magnetic nanoparticle tracer distribution therein. The pulsed magnetic particle imaging system also includes a pulsed excitation system arranged proximate the observation region, the pulsed excitation system includes an electromagnet and a pulse sequence generator electrically connected to the electromagnet to provide an excitation waveform to the electromagnet, wherein the electromagnet when provided with the excitation waveform generates an excitation magnetic field within the observation region to induce an excitation signal therefrom by at least one of shifting a location or condition of the FFR.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: January 25, 2022
    Assignee: The Regents of the University of California
    Inventors: Steven M. Conolly, Patrick W. Goodwill, Daniel Hensley, Zhi Wei Tay, Bo Zheng
  • Patent number: 11054392
    Abstract: A magnetic particle imaging apparatus includes magnets [106,107] that produce a gradient magnetic field having a field free region (FFR), excitation field electromagnets [102,114] that produce a radiofrequency magnetic field within the field free region, high-Q receiving coils [112] that detect a response of magnetic particles in the field free region to the excitation field. Field translation electromagnets create a homogeneous magnetic field displacing the field-free region through the field of view (FOV) allowing the imaging region to be scamled to optimize scan time, scanning power, amplifier heating, SAR, dB/dt, and/or slew rate. Efficient multi-resolution scanning techniques are also provided. Intermodulated low and radio-frequency excitation signals are processed to produce an image of a distribution of the magnetic nanoparticles within the imaging region. A single composite image is computed using deconvolution of multiple signals at different harmonics.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: July 6, 2021
    Assignee: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Publication number: 20200245893
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Applicant: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Patent number: 10667716
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: June 2, 2020
    Assignee: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Publication number: 20190212298
    Abstract: A magnetic particle imaging apparatus includes magnets [106,107] that produce a gradient magnetic field having a field free region (FFR), excitation field electromagnets [102,114] that produce a radiofrequency magnetic field within the field free region, high-Q receiving coils [112] that detect a response of magnetic particles in the field free region to the excitation field. Field translation electromagnets create a homogeneous magnetic field displacing the field-free region through the field of view (FOV) allowing the imaging region to be scamled to optimize scan time, scanning power, amplifier heating, SAR, dB/dt, and/or slew rate. Efficient multi-resolution scanning techniques are also provided. Intermodulated low and radio-frequency excitation signals are processed to produce an image of a distribution of the magnetic nanoparticles within the imaging region. A single composite image is computed using deconvolution of multiple signals at different harmonics.
    Type: Application
    Filed: July 20, 2018
    Publication date: July 11, 2019
    Applicant: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Publication number: 20190079149
    Abstract: A pulsed magnetic particle imaging system includes a magnetic field generating system that includes at least one magnet, the magnetic field generating system providing a spatially structured magnetic field within an observation region of the magnetic particle imaging system such that the spatially structured magnetic field will have a field-free region (FFR) for an object under observation having a magnetic nanoparticle tracer distribution therein. The pulsed magnetic particle imaging system also includes a pulsed excitation system arranged proximate the observation region, the pulsed excitation system includes an electromagnet and a pulse sequence generator electrically connected to the electromagnet to provide an excitation waveform to the electromagnet, wherein the electromagnet when provided with the excitation waveform generates an excitation magnetic field within the observation region to induce an excitation signal therefrom by at least one of shifting a location or condition of the FFR.
    Type: Application
    Filed: August 16, 2018
    Publication date: March 14, 2019
    Applicant: The Regents of the University of California
    Inventors: Steven M. Conolly, Patrick W. Goodwill, Daniel Hensley, Zhi Wei Tay, Bo Zheng
  • Patent number: 10048224
    Abstract: A magnetic particle imaging apparatus includes magnets [106,107] that produce a gradient magnetic field having a field free region (FFR), excitation field electromagnets [102,114] that produce a radiofrequency magnetic field within the field free region, high-Q receiving coils [112] that detect a response of magnetic particles in the field free region to the excitation field. Field translation electromagnets create a homogeneous magnetic field displacing the field-free region through the field of view (FOV) allowing the imaging region to be scaled to optimize scan time, scanning power, amplifier heating, SAR, dB/dt, and/or slew rate. Efficient multi-resolution scanning techniques are also provided. Intermodulated low and radio-frequency excitation signals are processed to produce an image of a distribution of the magnetic nanoparticles within the imaging region. A single composite image is computed using deconvolution of multiple signals at different harmonics.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: August 14, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Publication number: 20180206757
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Application
    Filed: August 10, 2017
    Publication date: July 26, 2018
    Applicant: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Patent number: 9763594
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: September 19, 2017
    Assignee: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Publication number: 20160135710
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Application
    Filed: December 16, 2015
    Publication date: May 19, 2016
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Patent number: 9274084
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: March 1, 2016
    Assignee: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Publication number: 20150015247
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 15, 2015
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Publication number: 20150008910
    Abstract: A magnetic particle imaging apparatus includes magnets [106,107] that produce a gradient magnetic field having a field free region (FFR), excitation field electromagnets [102,114] that produce a radiofrequency magnetic field within the field free region, high-Q receiving coils [112] that detect a response of magnetic particles in the field free region to the excitation field. Field translation electromagnets create a homogeneous magnetic field displacing the field-free region through the field of view (FOV) allowing the imaging region to be scaled to optimize scan time, scanning power, amplifier heating, SAR, dB/dt, and/or slew rate. Efficient multi-resolution scanning techniques are also provided. Intermodulated low and radio-frequency excitation signals are processed to produce an image of a distribution of the magnetic nanoparticles within the imaging region. A single composite image is computed using deconvolution of multiple signals at different harmonics.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 8, 2015
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Patent number: 8884617
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: November 11, 2014
    Assignee: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Patent number: 8847592
    Abstract: A magnetic particle imaging apparatus includes magnets [106,107] that produce a gradient magnetic field having a field free region (FFR), excitation field electromagnets [102,114] that produce a radiofrequency magnetic field within the field free region, high-Q receiving coils [112] that detect a response of magnetic particles in the field free region to the excitation field. Field translation electromagnets create a homogeneous magnetic field displacing the field-free region through the field of view (FOV) allowing the imaging region to be scanned to optimize scan time, scanning power, amplifier heating, SAR, dB/dt, and/or slew rate. Efficient multi-resolution scanning techniques are also provided. Intermodulated low and radio-frequency excitation signals are processed to produce an image of a distribution of the magnetic nanoparticles within the imaging region. A single composite image is computed using deconvolution of multiple signals at different harmonics.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: September 30, 2014
    Assignee: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Patent number: 8331531
    Abstract: The present invention provides a radiotherapy treatment apparatus that includes a treatment beam, a magnetic field disposed parallel collinear to the treatment beam, and a target that is disposed along the treatment beam. The treatment beam can be a charged particle beam, a proton beam, an electron beam, or a linear accelerator (Linac) beam. The magnetic field is from a magnetic resonance imager (MRI), a megavolt x-ray imager, or a kilovolt x-ray imager and is disposed to operate in coordination with operation of the treatment beam and to narrow the beam. The tumor is disposed to rotate with respect to the treatment beam and the magnetic field, or the treatment beam and the magnetic field are disposed to rotate up to 360° with respect to the target when mounted to a ring gantry. The apparatus can include a rotation angle dependent shim disposed to account for Earth's magnetic field.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: December 11, 2012
    Assignees: The Board of Trustees of the Leland Stanford Junior University, The Regents of the University of California
    Inventors: Rebecca Fahrig, Norbert J. Pelc, Kim Pauly, Greig C. Scott, Amit Sawant, Paul J. Keall, Lei Xing, Steven M. Conolly
  • Publication number: 20110221438
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 15, 2011
    Inventors: Patrick W. Goodwill, Steven M. Conolly