Patents by Inventor Steven M. Goetz

Steven M. Goetz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230381520
    Abstract: Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.
    Type: Application
    Filed: August 7, 2023
    Publication date: November 30, 2023
    Applicant: Medtronic, Inc.
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg, Kenneth T. Heruth, Mark S. Lent, Paul W. Wacnik
  • Patent number: 11813038
    Abstract: Techniques for remotely titrating a therapy delivered using an implantable medical device system are disclosed. An implantable medical device delivers therapy according to a first program. The system collects patient data relating to at least one of an efficacy of, or side effects resulting from, the delivered therapy, and transmits the patient data to a remote network device. A clinician may then analyze the patient data and determine if changes to the therapy are warranted. The clinician may then transmit a programming change, e.g., a modification to the first program or a new, second program, to the implantable medical device system, and the implantable medical device may deliver therapy according to the changed programming. The process of receiving patient data and modifying the therapy programming may be repeated multiple times until the therapy is adequately titrated, e.g., until the patient data indicates adequate efficacy and/or acceptable side effects.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: November 14, 2023
    Assignee: Medtronic, Inc.
    Inventor: Steven M. Goetz
  • Publication number: 20230355965
    Abstract: System and methods for stimulating or blocking a nerve are provided. The system may include an implantable pulse generator configured to generate a current and an electrode device in communication with the implantable pulse generator and configured to surround the nerve. The electrode device may include a housing comprising an inner surface, a first edge, and a second edge opposite the first edge; at least one electrode disposed on the inner surface and configured to apply the current to the nerve; and at least one closure configured to couple the first edge to the second edge to form a seal.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355982
    Abstract: A system is provided herein for stimulating an anatomical element of a patient. For example, the system may include a device configured to generate a current (e.g., implantable pulse generator), a first electrode device configured to apply the current to the anatomical element, and a second electrode device configured to record one or more response measurements associated with applying the current to the anatomical element. In some examples, the one or more response measurements may be used to generate growth curves associated with applying the current to the anatomical element, where the growth curves can be used to adjust one or more parameters of the current. Additionally, the one or more response measurements may include an evoked compound action potential (eCAP) measurement, an electromyography (EMG) measurement, a glucose level measurement, or a combination thereof.
    Type: Application
    Filed: April 7, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355980
    Abstract: Systems and methods for wirelessly providing therapy to one or more anatomical elements may comprise a first capsule and a second capsule. The first capsule may be configured to wirelessly transmit instructions to a second capsule and the second capsule may be configured to receive the wirelessly transmitted instructions. The first capsule may receive an activation signal and apply a first current to a first anatomical element. The first capsule may also wirelessly transmit a first set of instructions to the second capsule to cause the second capsule to apply a second current to a second anatomical element.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355141
    Abstract: A system is provided herein for stimulating an anatomical element of a patient. For example, the system may include a device (e.g., an implantable pulse generator) and an electrode device electrically coupled to the device. In some examples, the device may be configured to generate a current that is to be applied to the anatomical element via the electrode device to stimulate the anatomical element as part of a therapy aimed at achieving or supporting glycemic control in the patient. Additionally, the current may be applied to the anatomical element based on a machine learning algorithm that uses inputs gathered for determining one or more characteristics for the current. Accordingly, the machine learning algorithm may be configured to determine the one or more characteristics for the current specific to the patient (e.g., to provide personalized therapy settings for the patient).
    Type: Application
    Filed: April 7, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355987
    Abstract: Systems and methods for stimulating an anatomical element are provided. The system may comprise an implantable pulse generator configured to generate a current and an electrode device comprising a plurality of electrodes configured to apply the current to the anatomical element. Each of the plurality of electrodes may comprise at least one of an anode or a cathode. The electrode device may be customized by assigning each of the plurality of electrodes as at least one of an anode or a cathode and at least one of active or inactive. The current may be applied to the anatomical element in a predetermined pattern using the plurality of electrodes.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355977
    Abstract: A system is described that includes: a first sensor that measures a glycemic level of a patient; a second sensor that measures at least one of a protein level of the patient, a hormone level of the patient, and an activity level of the patient; a processor that receives inputs from the first sensor and inputs from the second sensor; and memory including data that, when executed by the processor, enables the processor to perform one or more functions. An example of such function(s) include: analyzing the inputs received from the first sensor and the second sensor; determining, based on the analysis, that an electrical treatment is to be applied to the patient, where the electrical treatment includes application of at least one electrical signal to a nervous system of the patient; and causing the electrical treatment to be applied to the nervous system of the patient.
    Type: Application
    Filed: April 7, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355975
    Abstract: A system is provided herein for stimulating an anatomical element of a patient to achieve glycemic control for the patient. In some examples, the system may include a device configured to generate a current and an electrode device electrically coupled to the device that includes a plurality of electrodes configured for placement on or around the anatomical element. The device may receive instructions to apply the current to the anatomical element via the plurality of electrodes of the electrode device. Additionally, the current may be applied using a first waveform of a plurality of waveforms that the device is capable of generating, where each of the plurality of waveforms comprise a substantially similar charge density. Additionally or alternatively, a system is provided that provides a pharmacological blockade at the anatomical element using a micropump that is configured to deliver a pharmacological agent to the anatomical element to achieve glycemic control.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355976
    Abstract: A system is provided herein for stimulating an anatomical element of a patient to regulate insulin production of the patient. In some examples, the system may include a device configured to generate a current and an electrode device electrically coupled to the device. Subsequently, the device may receive instructions to apply the current to the anatomical element via a plurality of electrodes of the electrode device, where the current is configured to regulate insulin production of the patient. For example, a first electrode may be configured for placement on or around a celiac vagal trunk, where the current downregulates neural activity of the celiac vagal trunk, and a second electrode may be configured for placement on or around a hepatic vagal trunk, where the current upregulates neural activity of the hepatic vagal trunk.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355981
    Abstract: A system is provided herein for stimulating an anatomical element of a patient. For example, a device may be configured to generate a current, and an electrode device coupled to the device may be configured to apply the current to the anatomical element. In some examples, the current may be configured to prevent hypoglycemic episodes from occurring in the patient when applied to the anatomical element. For example, the current may be configured to downregulate neural activity of a celiac vagal trunk and to upregulate neural activity of a hepatic vagal trunk. Accordingly, the current being applied to anatomical element of the patient may result in a decrease in insulin production of the patient, an increase in glucose production of the patient, an increase in blood sugar levels of the patient, or a combination thereof. Additionally, applying the current may prevent nocturnal hypoglycemic episodes from occurring.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, Shaileshkumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355969
    Abstract: A system is provided herein for stimulating an anatomical element of a patient. For example, a device may be configured to generate a current, and an electrode device coupled to the device may be configured to apply the current to the anatomical element. Additionally, the system may include a user interface in communication with the implantable pulse generator, the electrode device, or both. In some examples, the user interface may include a first element that is configured to display information associated with the patient. Additionally, the user interface may include a second element that is configured to receive inputs for programming parameters of the current. The user interface may also include a third element that is configured to display diagnostic information associated with applying the current to the anatomical element.
    Type: Application
    Filed: April 7, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355244
    Abstract: Systems and methods for mechanically blocking a nerve are provided. The system may comprise a blocking device configured to selectively compress the nerve. The system may also comprise a feedback mechanism configured to measure a response correlating to whether the nerve is blocked. When the blocking device compresses the nerve, a response from the feedback mechanism is received that correlates to the nerve being blocked or unblocked after a period of time.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230330426
    Abstract: Devices, systems, and techniques are disclosed for delivering electric field therapy to tissue of a subject. In one example, a technique includes removing a tumor from tissue to create a resection cavity, implanting a plurality of leads into the tissue adjacent to the resection cavity, and affixing the plurality of leads at least one of the tissue or bone. The example technique also includes tunneling proximal ends of the leads to an implantation pocket and coupling the proximal ends of the leads to an implantable medical device configured to be placed within the implantation pocket, wherein the implantable medical is configured to deliver electric field therapy via the plurality of implantable leads disposed adjacent to the resection cavity.
    Type: Application
    Filed: April 14, 2023
    Publication date: October 19, 2023
    Inventors: Steven M. Goetz, Lisa M. Jungbauer Nikolas, Benjamin Kevin Hendricks, Robert L. Olson, Richard T. Stone
  • Patent number: 11752343
    Abstract: Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: September 12, 2023
    Assignee: Medtronic, Inc.
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg, Kenneth T. Heruth, Mark S. Lent, Paul W. Wacnik
  • Patent number: 11701513
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: July 18, 2023
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Michael T. Hegland, Gabriela C. Molnar, James M. Olsen
  • Patent number: 11589810
    Abstract: An implantable nerve stimulator is implanted in a patient near a nerve target. The implantable nerve stimulator has a plurality of electrodes through which stimulation is provided to the nerve target. The relative location of the nerve target and the electrodes may be determined by applying stimulation to the nerves via each of the electrodes, determining an effect of the stimulation for each of the electrodes, and mapping a location of the nerve relative to the electrodes based on the effect of the stimulation for each of the electrodes.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: February 28, 2023
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, Steven M. Goetz, Christopher Poletto
  • Patent number: 11571576
    Abstract: Devices, systems, and techniques are disclosed for managing electrical stimulation therapy and/or sensing of physiological signals such as brain signals. For example, a system may assist a clinician in identifying one or more electrode combinations for sensing a brain signal. In another example, a user interface may display brain signal information and values of a stimulation parameter at least partially defining electrical stimulation delivered to a patient when the brain signal information was sensed.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: February 7, 2023
    Assignee: Medtronic, Inc.
    Inventors: Evan D. Schnell, Scott R. Stanslaski, Ilan D. Gordon, Steven M. Goetz, Hijaz M. Haris, Eric J. Panken, Timothy R. Abraham, Thomas L. Chouinard, Susan Heilman Kilbane, Karan Chitkara, Christopher M. Arnett, Alicia W. Thompson, Kevin C. Johnson, Ankush Thakur, Lukas Valine, Christopher L. Pulliam, Brady N. Fetting, Rucha Gokul G. Samant, Andrew H. Houchins, Caleb C. Zarns
  • Patent number: 11529517
    Abstract: Devices, systems, and techniques are disclosed for managing electrical stimulation therapy and/or sensing of physiological signals such as brain signals. For example, a system may assist a clinician in identifying one or more electrode combinations for sensing a brain signal. In another example, a user interface may display brain signal information and values of a stimulation parameter at least partially defining electrical stimulation delivered to a patient when the brain signal information was sensed.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: December 20, 2022
    Assignee: Medtronic, Inc.
    Inventors: Jadin C. Jackson, Steven M. Goetz
  • Publication number: 20220266023
    Abstract: A method for assessment of brain signals of a patient includes determining, by one or more processors, a cluster of neural data occurring at a brain of the patient and outputting, by the one or more processors, a request for a user to provide patient state information for the cluster of the neural data in response to determining that the cluster of the neural data is occurring at the brain of the patient. The method further includes associating, by the one or more processors, the patient state information with the cluster of the neural data to generate patient assessment information and outputting, by the one or more processors, the patient assessment information.
    Type: Application
    Filed: January 18, 2022
    Publication date: August 25, 2022
    Inventors: Leonid M. Litvak, Steven M. Goetz, Christopher L. Pulliam, Scott R. Stanslaski