Patents by Inventor Steven M. Jaffe

Steven M. Jaffe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230103509
    Abstract: A spinning-disk confocal microscopy system, and components thereof, with improved illumination. The system may include a liquid light guide (LLG), a reflecting mirror tube, and/or other light guide directing light from a light source to the system's confocal optics. An LLG may provide certain advantages over other conveyance mechanisms. For example, thermal motion of the liquid in the LLG may alter the optical path and scatter light, reducing or eliminating spatial and temporal coherence introduced by the light source. This, in turn, may create more uniform illumination on samples. A reflecting mirror tube may similarly have advantages.
    Type: Application
    Filed: July 14, 2022
    Publication date: April 6, 2023
    Inventors: Steven M. JAFFE, Alex JASSO, Claudia B. JAFFE
  • Publication number: 20220291129
    Abstract: An integrated fluorescence scanning system is provided. The integrated fluorescence scanner combines an embedded computer, light engine, microscope, and motion stage into a compact rack-mountable network appliance that allows for automation of fluorescence microscopy. In an embodiment, the integrated fluorescence scanner includes a solid-state light engine which can provide intense, pure, and stable light across the spectrum required for imaging of all fluorophores of interest. The embedded computer allows for autonomous operation, and network appliance features including synchronous multi-scanner operation and monitoring, multisite operation via a single control terminal, and calibration for inter and intra instrument consistency.
    Type: Application
    Filed: March 28, 2022
    Publication date: September 15, 2022
    Applicant: Lumencor, Inc.
    Inventors: Claudia B. JAFFE, Steven M. JAFFE
  • Patent number: 9658160
    Abstract: A system and method for metered dosage illumination in a bioanalysis or other system. In accordance with an embodiment, an illumination system or subsystem is described that can provide optimized amounts of excitation light within the short exposure times necessary to measure fast biological activity. The amount of light can be precisely measured to provide quantitative results. The light flux can also be precisely controlled to generate only a prescribed minimum amount of light, in order to reduce adverse lighting effects on both fluors and samples. Although the examples herein illustrate the providing of metered dosage illumination in the context of a bioanalysis system, the techniques can be similarly used to provide metered dosage illumination in the context of other types of system. In accordance with various embodiments, the technique is particularly useful in any quality-control, analysis, or assessment-based environment.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: May 23, 2017
    Assignee: LUMENCOR, INC.
    Inventors: Claudia B Jaffe, Steven M Jaffe, David Larsen
  • Patent number: 9642515
    Abstract: A solid state illumination system is provided as a replacement for conventional arc light, metal halide and Xenon white-light sources for applications in microscopy, fluorescence microscopy, and endoscopy. The solid state illumination system generates high quality white light output from LED light sources. The white light output is continuous in the visible spectrum from 380 nm to 650 nm and is suitable for imaging all the most common fluorophores and fluorescent proteins. In embodiments, an LED light pipe engine is used to generate a portion of the spectral content of the white light output.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: May 9, 2017
    Assignee: LUMENCOR, INC.
    Inventors: Steven M. Jaffe, Claudia B. Jaffe, George S. Tylinski
  • Patent number: 9632302
    Abstract: A solid state illumination system is provided as a replacement for conventional arc light, metal halide and Xenon white-light sources for applications in life sciences including, microscopy, fluorescence microscopy, and endoscopy. The solid state illumination system generates high quality white light output from LED light sources. In an embodiment, the solid state illumination system is coupled to a microscope using a liquid light guide. The liquid light guide is coupled to a microscope using an adjustable collimator which optimizes the light output for input to the optical train of the microscope.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: April 25, 2017
    Assignee: LUMENCOR, INC.
    Inventors: Claudia B. Jaffe, Steven M. Jaffe
  • Publication number: 20160223461
    Abstract: A system and method for metered dosage illumination in a bioanalysis or other system. In accordance with an embodiment, an illumination system or subsystem is described that can provide optimized amounts of excitation light within the short exposure times necessary to measure fast biological activity. The amount of light can be precisely measured to provide quantitative results. The light flux can also be precisely controlled to generate only a prescribed minimum amount of light, in order to reduce adverse lighting effects on both fluors and samples. Although the examples herein illustrate the providing of metered dosage illumination in the context of a bioanalysis system, the techniques can be similarly used to provide metered dosage illumination in the context of other types of system. In accordance with various embodiments, the technique is particularly useful in any quality-control, analysis, or assessment-based environment.
    Type: Application
    Filed: April 11, 2016
    Publication date: August 4, 2016
    Inventors: CLAUDIA B JAFFE, STEVEN M JAFFE, DAVID LARSEN
  • Patent number: 9335266
    Abstract: A system and method for controlled illumination in a bioanalysis or other system where excitation of fluorescent molecules is desirable. In an embodiment, an illumination system is described which can provide excitation light at a controlled intensity to provide quantitative results. In an embodiment, a solid state light engine is described which includes a plurality of color channels each providing light output suitable for exciting a fluorescent molecule, a light to frequency converter which receives a portion of the light output, a counter which maintains a count of a signal from the light to frequency converter, and a light intensity circuit, responsive to the counter, which adjusts the color channels to control the intensity of the light output.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: May 10, 2016
    Assignee: LUMENCOR, INC.
    Inventors: Claudia B. Jaffe, Steven M. Jaffe, David Larsen
  • Publication number: 20160123886
    Abstract: An integrated fluorescence scanning system is provided. The integrated fluorescence scanner combines an embedded computer, light engine, microscope, and motion stage into a compact rack-mountable network appliance that allows for automation of fluorescence microscopy. In an embodiment, the integrated fluorescence scanner includes a solid-state light engine which can provide intense, pure, and stable light across the spectrum required for imaging of all fluorophores of interest. The embedded computer allows for autonomous operation, and network appliance features including synchronous multi-scanner operation and monitoring, multisite operation via a single control terminal, and calibration for inter and intra instrument consistency.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 5, 2016
    Inventors: Claudia B. Jaffe, Steven M. Jaffe
  • Patent number: 9217561
    Abstract: A compact passively-cooled solid state illumination system is provided as a replacement for conventional arc light, metal halide and Xenon white-light sources for photocuring applications. The solid state illumination system utilizes LED modules to generate high intensity light output suitable for photocuring. The light output is continuous in the visible spectrum from 380 nm to 530 nm and is suitable for photocuring using a wide range of photoinitiators. A touchscreen interface allows programming of spectral output, intensity and duration. Output can be initiated using the touchscreen interface and/or a foot pedal.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: December 22, 2015
    Assignee: LUMENCOR, INC.
    Inventors: Claudia B. Jaffe, Steven M. Jaffe, George S. Tylinski
  • Patent number: 9103528
    Abstract: A solid state illumination system is provided as a replacement for conventional arc light, metal halide and Xenon white-light sources for applications in life sciences including, microscopy, fluorescence microscopy, and endoscopy. The solid state illumination system generates high quality white light output from LED light sources. The white light output is continuous in the visible spectrum from 380 nm to 650 nm and is suitable for imaging all the most common fluorophores and fluorescent proteins. In embodiments, an LED light pipe engine is used to generate a portion of the spectral content of the white light output. In alternative embodiments the solid state illumination system produces light output of a selectable color.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: August 11, 2015
    Assignee: LUMENCOR, INC
    Inventors: Steven M. Jaffe, Claudia B. Jaffe, George S. Tylinski
  • Patent number: 9063007
    Abstract: The invention relates to a light source for irradiating molecules present in a detection volume with one or more selected wavelengths of light and directing the fluorescence, absorbance, transmittance, scattering onto one or more detectors. Molecular interactions with the light allow for the identification and quantitation of participating chemical moieties in reactions utilizing physical or chemical tags, most typically fluorescent and chromophore labels. The invention can also use the light source to separately and simultaneously irradiate a plurality of capillaries or other flow confining structures with one or more selected wavelengths of light and separately and simultaneously detect fluorescence produced within the capillaries or other flow confining structures. In various embodiments, the flow confining structures can allow separation or transportation of molecules and include capillary, micro bore and milli bore flow systems.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: June 23, 2015
    Assignee: LUMENCOR, INC.
    Inventors: Claudia B. Jaffe, Steven M. Jaffe, Michieal L. Jones
  • Patent number: 8998468
    Abstract: A solid state illumination system is provided as a replacement for conventional arc light, metal halide and Xenon light sources for applications in microscopy, fluorescence microscopy, and endoscopy. The illumination system includes hybrid optical and electrical control of output intensity in which the light output of one or more of the light sources is attenuated optically such that it is not necessary to reduce the electrical drive power/current of the LEDs at a level where the spectral power distribution is variable. One or more fixed, selectable, or variable neutral density filters is interposed in the output beam of one or more sources to achieve optical attenuation of the light output. The hybrid optical and electrical control of output intensity allows greater dynamic range of intensity to be achieved than could be achieved with electrical control of the LEDs alone while maintaining the desired spectral power distribution.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: April 7, 2015
    Assignee: Lumencor, Inc.
    Inventors: Claudia B. Jaffe, Steven M. Jaffe
  • Patent number: 8967846
    Abstract: A solid state illumination system is provided as a replacement for conventional arc light, metal halide and Xenon white-light sources for applications in life sciences including, microscopy, fluorescence microscopy, and endoscopy. The solid state illumination system generates high quality white light output from LED light sources. The white light output is continuous in the visible spectrum from 380 nm to 650 nm and is suitable for imaging all the most common fluorophores and fluorescent proteins. In embodiments, an LED light pipe engine is used to generate a portion of the spectral content of the white light output. In alternative embodiments the solid state illumination system produces light output of a selectable color.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: March 3, 2015
    Assignee: Lumencor, Inc.
    Inventors: Steven M. Jaffe, Claudia B. Jaffe, George S. Tylinski
  • Patent number: 8967811
    Abstract: A solid state illumination system is provided as a replacement for conventional arc light, metal halide and Xenon white-light sources for applications in life sciences including, microscopy, fluorescence microscopy, and endoscopy. The solid state illumination system generates high quality white light output from LED light sources. The white light output is continuous in the visible spectrum from 380 nm to 650 nm and is suitable for imaging all the most common fluorophores and fluorescent proteins. In embodiments, an LED light pipe engine is used to generate a portion of the spectral content of the white light output. In alternative embodiments the solid state illumination system produces light output of a selectable color.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: March 3, 2015
    Assignee: Lumencor, Inc.
    Inventors: Steven M. Jaffe, Claudia B. Jaffe, George S. Tylinski
  • Publication number: 20140192405
    Abstract: A solid state illumination system is provided as a replacement for conventional arc light, metal halide and Xenon white-light sources for applications in life sciences including, microscopy, fluorescence microscopy, and endoscopy. The solid state illumination system generates high quality white light output from LED light sources. In an embodiment, the solid state illumination system is coupled to a microscope using a liquid light guide. The liquid light guide is coupled to a microscope using an adjustable collimator which optimizes the light output for input to the optical train of the microscope.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 10, 2014
    Applicant: Lumencor, Inc.
    Inventors: Claudia B. Jaffe, Steven M. Jaffe
  • Patent number: 8728399
    Abstract: The invention relates to a light source for irradiating molecules present in a detection volume with one or more selected wavelengths of light and directing the fluorescence, absorbance, transmittance, scattering onto one or more detectors. Molecular interactions with the light allow for the identification and quantitation of participating chemical moieties in reactions utilizing physical or chemical tags, most typically fluorescent and chromophore labels. The invention can also use the light source to separately and simultaneously irradiate a plurality of capillaries or other flow confining structures with one or more selected wavelengths of light and separately and simultaneously detect fluorescence produced within the capillaries or other flow confining structures. In various embodiments, the flow confining structures can allow separation or transportation of molecules and include capillary, micro bore and milli bore flow systems.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: May 20, 2014
    Assignee: Lumencor, Inc.
    Inventors: Claudia B. Jaffe, Steven M. Jaffe, Michieal L. Jones
  • Patent number: 8698101
    Abstract: The invention relates to a plurality of light sources to power a variety of applications including microarray readers, microplate scanners, microfluidic analyzers, sensors, sequencers, Q-PCR and a host of other bioanalytical tools that drive today's commercial, academic and clinical biotech labs.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: April 15, 2014
    Assignee: Lumencor, Inc.
    Inventors: Claudia B. Jaffe, Steven M. Jaffe, Arlie R. Conner
  • Patent number: 8673218
    Abstract: The invention relates to a light source for irradiating molecules present in a detection volume with one or more selected wavelengths of light and directing the fluorescence, absorbance, transmittance, scattering onto one or more detectors. Molecular interactions with the light allow for the identification and quantitation of participating chemical moieties in reactions utilizing physical or chemical tags, most typically fluorescent and chromophore labels. The invention can also use the light source to separately and simultaneously irradiate a plurality of capillaries or other flow confining structures with one or more selected wavelengths of light and separately and simultaneously detect fluorescence produced within the capillaries or other flow confining structures. In various embodiments, the flow confining structures can allow separation or transportation of molecules and include capillary, micro bore and milli bore flow systems.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: March 18, 2014
    Assignee: Lumencor, Inc.
    Inventors: Claudia B. Jaffe, Steven M. Jaffe, Michieal L. Jones
  • Publication number: 20130335992
    Abstract: A compact passively-cooled solid state illumination system is provided as a replacement for conventional arc light, metal halide and Xenon white-light sources for photocuring applications. The solid state illumination system utilizes LED modules to generate high intensity light output suitable for photocuring. The light output is continuous in the visible spectrum from 380 nm to 530 nm and is suitable for photocuring using a wide range of photoinitiators. A touchscreen interface allows programming of spectral output, intensity and duration. Output can be initiated using the touchscreen interface and/or a foot pedal.
    Type: Application
    Filed: May 24, 2013
    Publication date: December 19, 2013
    Inventors: Claudia B. Jaffe, Steven M. Jaffe, George S. Tylinski
  • Publication number: 20130242595
    Abstract: A solid state illumination system is provided as a replacement for conventional arc light, metal halide and Xenon light sources for applications in microscopy, fluorescence microscopy, and endoscopy. The illumination system includes hybrid optical and electrical control of output intensity in which the light output of one or more of the light sources is attenuated optically such that it is not necessary to reduce the electrical drive power/current of the LEDs at a level where the spectral power distribution is variable. One or more fixed, selectable, or variable neutral density filters is interposed in the output beam of one or more sources to achieve optical attenuation of the light output. The hybrid optical and electrical control of output intensity allows greater dynamic range of intensity to be achieved than could be achieved with electrical control of the LEDs alone while maintaining the desired spectral power distribution.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 19, 2013
    Applicant: LUMENCOR, INC.
    Inventors: Claudia B. Jaffe, Steven M. Jaffe