Patents by Inventor Steven M. Kilczewski

Steven M. Kilczewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230279525
    Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.
    Type: Application
    Filed: August 12, 2022
    Publication date: September 7, 2023
    Inventors: John J. PITTARI, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
  • Patent number: 11725262
    Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.
    Type: Grant
    Filed: August 12, 2022
    Date of Patent: August 15, 2023
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
  • Publication number: 20230160042
    Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.
    Type: Application
    Filed: August 12, 2022
    Publication date: May 25, 2023
    Inventors: John J. PITTARI, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
  • Patent number: 11434549
    Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: September 6, 2022
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
  • Publication number: 20200024702
    Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Inventors: John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
  • Publication number: 20190321917
    Abstract: A method for fabricating tungsten carbide cermet components or parts employs powder bed fusion of powder mixture of ceramic particles and metal binder. Some embodiments also include a step of hot isostatic pressing to increase the density of the part.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Nicholas Ku, John J. Pittari, III, Steven M. Kilczewski, Andelle D. Kudzal, Jeffrey J. Swab, Brady B. Aydelotte
  • Publication number: 20180142331
    Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25 % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 24, 2018
    Inventors: John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding