Patents by Inventor Steven M. Shope

Steven M. Shope has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8629799
    Abstract: A radar system (22) includes a transmitter (45), a receiver (59), and a software defined radio (SDR) peripheral (40). Methodology (80) for investigating a target zone (26) utilizing the system (22) entails generating (106) a direct sequence spread spectrum (DSSS) code (120) having a code length (122) corresponding to a time duration of radio wave travel between the transmitter (45), the target zone (26), and the receiver (59) at a carrier frequency (112). A beacon signal (34), modulated (108) by the DSSS code (120), is transmitted (152) from the transmitter (45) toward the target zone (26) and a return signal (38) is received (156) at the receiver (56). The return signal (38) is compared (170) to a replica signal (168) characterized by the DSSS code (120), and presence of an object (32) in the target zone (26) is ascertained (178) when the return signal (38) matches the replica signal (168).
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: January 14, 2014
    Assignee: Sandia Research Corporation
    Inventor: Steven M. Shope
  • Patent number: 8462829
    Abstract: A method of wireless communication in a lossy environment entails generating a direct sequence spread spectrum (DSSS) code string that includes a pseudo-noise (PN) sequence followed by instances of shifted PN sequences, where the shifted PN sequences are produced in response to the content of the message. The PN sequence includes a plurality of chips arranged in a first order, and each of the shifted PN sequences includes the plurality of chips arranged in another order. A beacon signal modulated by the DSSS code string is transmitted from a transceiver and received at a receiver within the communication system. Correlation peaks are formed at the receiver, where each correlation peak is associated with one of the PN sequences or one of the shifted PN sequences. Shift values are determined from the correlation peaks and the shift values are decoded to produce the message at the receiver.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: June 11, 2013
    Assignee: Sandia Research Corporation
    Inventors: Steven M. Shope, Vigneswaran Rajagopalan
  • Publication number: 20130114643
    Abstract: A method of wireless communication in a lossy environment entails generating a direct sequence spread spectrum (DSSS) code string that includes a pseudo-noise (PN) sequence followed by instances of shifted PN sequences, where the shifted PN sequences are produced in response to the content of the message. The PN sequence includes a plurality of chips arranged in a first order, and each of the shifted PN sequences includes the plurality of chips arranged in another order. A beacon signal modulated by the DSSS code string is transmitted from a transceiver and received at a receiver within the communication system. Correlation peaks are formed at the receiver, where each correlation peak is associated with one of the PN sequences or one of the shifted PN sequences. Shift values are determined from the correlation peaks and the shift values are decoded to produce the message at the receiver.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 9, 2013
    Applicant: SANDIA RESEARCH CORPORATION
    Inventors: Steven M. Shope, Vigneswaran Rajagopalan
  • Publication number: 20120249356
    Abstract: A radar system (22) includes a transmitter (45), a receiver (59), and a software defined radio (SDR) peripheral (40). Methodology (80) for investigating a target zone (26) utilizing the system (22) entails generating (106) a direct sequence spread spectrum (DSSS) code (120) having a code length (122) corresponding to a time duration of radio wave travel between the transmitter (45), the target zone (26), and the receiver (59) at a carrier frequency (112). A beacon signal (34), modulated (108) by the DSSS code (120), is transmitted (152) from the transmitter (45) toward the target zone (26) and a return signal (38) is received (156) at the receiver (56). The return signal (38) is compared (170) to a replica signal (168) characterized by the DSSS code (120), and presence of an object (32) in the target zone (26) is ascertained (178) when the return signal (38) matches the replica signal (168).
    Type: Application
    Filed: March 30, 2011
    Publication date: October 4, 2012
    Applicant: Sandia Research Corporation
    Inventor: Steven M. Shope
  • Patent number: 4951263
    Abstract: An underwater location beacon emits a continuous wave signal which is phase-shift modulated by a pseudo-noise, spread spectrum code. This signal is detected with an exact replica of the transmitted code. To an unauthorized observer without the replica, the transponder's signal is indistinguishable from background ocean noise. The spread spectrum code allows extraction of the signal from high levels of ocean noise, providing an increased detection range, jamming resistance, covertness, and unique signals for each pinger. The outputs of the surface spread spectrum receiver are used with automated location algorithms. Several receivers at different surface positions provide the underwater coordinates of the pinger's location.
    Type: Grant
    Filed: July 20, 1989
    Date of Patent: August 21, 1990
    Assignee: Sandia Research Associates, Inc.
    Inventor: Steven M. Shope