Patents by Inventor Steven M. Sparks

Steven M. Sparks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250114356
    Abstract: Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Application
    Filed: August 5, 2024
    Publication date: April 10, 2025
    Inventors: Erika Marina Vieira Araujo, Steven M. Sparks, Michael Berlin, Jing Wang, Wei Zhang
  • Publication number: 20240360152
    Abstract: Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Application
    Filed: May 9, 2024
    Publication date: October 31, 2024
    Inventors: Erika Marina Vieira Araujo, Michael Berlin, Hanqing Dong, Steven M. Sparks, Jing Wang, Wei Zhang
  • Patent number: 12053469
    Abstract: Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: August 6, 2024
    Assignee: Arvinas Operations, Inc.
    Inventors: Erika Araujo, Michael M. Berlin, Steven M. Sparks, Jing Wang, Wei Zhang
  • Publication number: 20240158405
    Abstract: Bifunctional compounds, which find utility as modulators of non-receptor Leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Application
    Filed: November 16, 2023
    Publication date: May 16, 2024
    Inventors: Erika Marina Vieira Araujo, Michael Berlin, Steven M. Sparks, Jing Wang, Wei Zhang
  • Patent number: 11981683
    Abstract: Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Grant
    Filed: March 19, 2022
    Date of Patent: May 14, 2024
    Assignee: Arvinas Operations, Inc.
    Inventors: Erika Marina Vieira Araujo, Michael Berlin, Hanqing Dong, Steven M. Sparks, Jing Wang, Wei Zhang
  • Publication number: 20240091204
    Abstract: The present disclosure relates to bifunctional compounds, which find utility as modulators of ?-synuclein (target protein). In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a Von Hippel-Lindau, cereblon. Inhibitors of Apotosis Proteins or mouse double-minute homolog 2 ligand which binds to the respective E3 ubiquitin ligase and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Application
    Filed: September 18, 2023
    Publication date: March 21, 2024
    Inventors: Andrew P. Crew, Hanqing Dong, Michael Berlin, Steven M. Sparks
  • Patent number: 11858940
    Abstract: Bifunctional compounds, which find utility as modulators of non-receptor Leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: January 2, 2024
    Assignee: Arvinas Operations, Inc.
    Inventors: Erika Araujo, Michael Berlin, Steven M. Sparks, Jing Wang, Wei Zhang
  • Patent number: 11707452
    Abstract: The present disclosure relates to bifunctional compounds, which find utility as modulators of ?-synuclein (target protein). In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a Von Hippel-Lindau, cereblon. Inhibitors of Apotosis Proteins or mouse double-minute homolog 2 ligand which binds to the respective E3 ubiquitin ligase and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: July 25, 2023
    Assignee: Arvinas Operations, Inc.
    Inventors: Andrew P. Crew, Hanqing Dong, Michael Berlin, Steven M. Sparks
  • Publication number: 20230097358
    Abstract: Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Application
    Filed: March 19, 2022
    Publication date: March 30, 2023
    Inventors: Erika Marina Vieira Araujo, Michael Berlin, Hanqing Dong, Steven M. Sparks, Jing Wang, Wei Zhang
  • Publication number: 20220064168
    Abstract: Bifunctional compounds, which find utility as modulators of non-receptor Leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Application
    Filed: March 19, 2021
    Publication date: March 3, 2022
    Inventors: Erika Araujo, Michael Berlin, Steven M. Sparks, Jing Wang, Wei Zhang
  • Publication number: 20210315896
    Abstract: Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Application
    Filed: March 19, 2021
    Publication date: October 14, 2021
    Inventors: Erika Araujo, Michael M. Berlin, Steven M. Sparks, Jing Wang, Wei Zhang
  • Publication number: 20200085793
    Abstract: The present disclosure relates to bifunctional compounds, which find utility as modulators of ?-synuclein (target protein). In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a Von Hippel-Lindau, cereblon. Inhibitors of Apotosis Proteins or mouse double-minute homolog 2 ligand which binds to the respective E3 ubiquitin ligase and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Application
    Filed: August 20, 2019
    Publication date: March 19, 2020
    Inventors: Andrew P. Crew, Hanqing Dong, Michael Berlin, Steven M. Sparks