Patents by Inventor Steven M. Sparks
Steven M. Sparks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250114356Abstract: Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.Type: ApplicationFiled: August 5, 2024Publication date: April 10, 2025Inventors: Erika Marina Vieira Araujo, Steven M. Sparks, Michael Berlin, Jing Wang, Wei Zhang
-
Publication number: 20240360152Abstract: Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.Type: ApplicationFiled: May 9, 2024Publication date: October 31, 2024Inventors: Erika Marina Vieira Araujo, Michael Berlin, Hanqing Dong, Steven M. Sparks, Jing Wang, Wei Zhang
-
Patent number: 12053469Abstract: Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.Type: GrantFiled: March 19, 2021Date of Patent: August 6, 2024Assignee: Arvinas Operations, Inc.Inventors: Erika Araujo, Michael M. Berlin, Steven M. Sparks, Jing Wang, Wei Zhang
-
Publication number: 20240158405Abstract: Bifunctional compounds, which find utility as modulators of non-receptor Leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.Type: ApplicationFiled: November 16, 2023Publication date: May 16, 2024Inventors: Erika Marina Vieira Araujo, Michael Berlin, Steven M. Sparks, Jing Wang, Wei Zhang
-
Patent number: 11981683Abstract: Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.Type: GrantFiled: March 19, 2022Date of Patent: May 14, 2024Assignee: Arvinas Operations, Inc.Inventors: Erika Marina Vieira Araujo, Michael Berlin, Hanqing Dong, Steven M. Sparks, Jing Wang, Wei Zhang
-
Publication number: 20240091204Abstract: The present disclosure relates to bifunctional compounds, which find utility as modulators of ?-synuclein (target protein). In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a Von Hippel-Lindau, cereblon. Inhibitors of Apotosis Proteins or mouse double-minute homolog 2 ligand which binds to the respective E3 ubiquitin ligase and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.Type: ApplicationFiled: September 18, 2023Publication date: March 21, 2024Inventors: Andrew P. Crew, Hanqing Dong, Michael Berlin, Steven M. Sparks
-
Patent number: 11858940Abstract: Bifunctional compounds, which find utility as modulators of non-receptor Leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.Type: GrantFiled: March 19, 2021Date of Patent: January 2, 2024Assignee: Arvinas Operations, Inc.Inventors: Erika Araujo, Michael Berlin, Steven M. Sparks, Jing Wang, Wei Zhang
-
Patent number: 11707452Abstract: The present disclosure relates to bifunctional compounds, which find utility as modulators of ?-synuclein (target protein). In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a Von Hippel-Lindau, cereblon. Inhibitors of Apotosis Proteins or mouse double-minute homolog 2 ligand which binds to the respective E3 ubiquitin ligase and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.Type: GrantFiled: August 20, 2019Date of Patent: July 25, 2023Assignee: Arvinas Operations, Inc.Inventors: Andrew P. Crew, Hanqing Dong, Michael Berlin, Steven M. Sparks
-
Publication number: 20230097358Abstract: Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.Type: ApplicationFiled: March 19, 2022Publication date: March 30, 2023Inventors: Erika Marina Vieira Araujo, Michael Berlin, Hanqing Dong, Steven M. Sparks, Jing Wang, Wei Zhang
-
Publication number: 20220064168Abstract: Bifunctional compounds, which find utility as modulators of non-receptor Leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.Type: ApplicationFiled: March 19, 2021Publication date: March 3, 2022Inventors: Erika Araujo, Michael Berlin, Steven M. Sparks, Jing Wang, Wei Zhang
-
Publication number: 20210315896Abstract: Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.Type: ApplicationFiled: March 19, 2021Publication date: October 14, 2021Inventors: Erika Araujo, Michael M. Berlin, Steven M. Sparks, Jing Wang, Wei Zhang
-
Publication number: 20200085793Abstract: The present disclosure relates to bifunctional compounds, which find utility as modulators of ?-synuclein (target protein). In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a Von Hippel-Lindau, cereblon. Inhibitors of Apotosis Proteins or mouse double-minute homolog 2 ligand which binds to the respective E3 ubiquitin ligase and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.Type: ApplicationFiled: August 20, 2019Publication date: March 19, 2020Inventors: Andrew P. Crew, Hanqing Dong, Michael Berlin, Steven M. Sparks