Patents by Inventor Steven M. Swain

Steven M. Swain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11630265
    Abstract: An optical circuit switch including a two-dimensional fiber collimator includes a hole plate to hold and align a plurality of optical fibers. Fiber pathways within the hole plate can be formed using a femtosecond laser irradiation chemical etching (FLICE) technique. The use of the FLICE technique allows for extremely precise channels to be formed which allows for fibers to be aligned more closely with their intended alignment. The technique also allows for the channels or fiber pathways to be formed in a thicker material, which allows for greater structural support and robustness of the fiber collimator in use.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: April 18, 2023
    Assignee: Google LLC
    Inventors: Jill Berger, Kevin Yasumura, Steven M. Swain
  • Publication number: 20210325612
    Abstract: An optical circuit switch including a two-dimensional fiber collimator includes a hole plate to hold and align a plurality of optical fibers. Fiber pathways within the hole plate can be formed using a femtosecond laser irradiation chemical etching (FLICE) technique. The use of the FLICE technique allows for extremely precise channels to be formed which allows for fibers to be aligned more closely with their intended alignment. The technique also allows for the channels or fiber pathways to be formed in a thicker material, which allows for greater structural support and robustness of the fiber collimator in use.
    Type: Application
    Filed: April 15, 2020
    Publication date: October 21, 2021
    Inventors: Jill Berger, Kevin Yasumura, Steven M. Swain
  • Patent number: 10684398
    Abstract: An apparatus and a camera system are provided. The apparatus includes an imaging screen configured to diffuse incoming light, and a lens system coupled to the imaging screen and configured to focus light from the imaging screen onto a CMOS image sensor. The imaging screen includes a ceramic diffuser layer fused into a surface of a glass substrate, and a thickness of the ceramic diffuser layer is within a range of about 7-10 ?m.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: June 16, 2020
    Assignee: Google LLC
    Inventors: Jill D. Berger, Steven M. Swain, Tianran Liang, Kevin Y. Yasumura
  • Publication number: 20190025478
    Abstract: An apparatus and a camera system are provided. The apparatus includes an imaging screen configured to diffuse incoming light, and a lens system coupled to the imaging screen and configured to focus light from the imaging screen onto a CMOS image sensor. The imaging screen includes a ceramic diffuser layer fused into a surface of a glass substrate, and a thickness of the ceramic diffuser layer is within a range of about 7-10 ?m.
    Type: Application
    Filed: September 17, 2018
    Publication date: January 24, 2019
    Inventors: Jill D. Berger, Steven M. Swain, Tianran Liang, Kevin Y. Yasumura
  • Patent number: 10120111
    Abstract: An apparatus and a camera system are provided. The apparatus includes an imaging screen configured to diffuse incoming light, and a lens system coupled to the imaging screen and configured to focus light from the imaging screen onto a CMOS image sensor. The imaging screen includes a ceramic diffuser layer fused into a surface of a glass substrate, and a thickness of the ceramic diffuser layer is within a range of about 7-10 ?m.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: November 6, 2018
    Assignee: Google LLC
    Inventors: Jill D. Berger, Steven M. Swain, Tianran Liang, Kevin Y. Yasumura
  • Publication number: 20180164476
    Abstract: An apparatus and a camera system are provided. The apparatus includes an imaging screen configured to diffuse incoming light, and a lens system coupled to the imaging screen and configured to focus light from the imaging screen onto a CMOS image sensor. The imaging screen includes a ceramic diffuser layer fused into a surface of a glass substrate, and a thickness of the ceramic diffuser layer is within a range of about 7-10 ?m.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Jill D. Berger, Steven M. Swain, Tianran Liang, Kevin Y. Yasumura
  • Patent number: 9726824
    Abstract: A collimator device and a collimator lens array for an optical circuit switch are provided. The collimator includes a fiber array including multiple optical fibers disposed in a hole array. An optical lens array is aligned and coupled to the fiber array. A spacer is disposed between the fiber array and the optical lens array and provides substantially uniform spacing between lenses in the optical lens array and corresponding fibers in the fiber array. Multiple pads are positioned along edges of a surface of the spacer facing the optical lens array defining a first separation gap between the spacer and the optical lens array. A first epoxy bonds the spacer to the optical lens array, and a second epoxy bonds the spacer to the fiber array. The optical lens array includes a glass substrate having a first surface defining lenses in a two-dimensional array.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: August 8, 2017
    Assignee: Google Inc.
    Inventors: Jill D. Berger, David Funk, Steven M. Swain, Kevin Y. Yasumura
  • Patent number: 6697553
    Abstract: A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: February 24, 2004
    Assignee: JDS Uniphase Corporation
    Inventors: Jyoti Kiron Bhardwaj, Robert James Brainard, David J. Chapman, Douglas E. Crafts, Zi-Wen Dong, David Dougherty, Erik W. Egan, James F. Farrell, Mark B. Farrelly, Niranjan Gopinathan, Kenzo Ishida, David K. Nakamoto, Thomas Thuan Nguyen, Suresh Ramalingam, Steven M. Swain, Sanjay M. Thekdi, Anantharaman Vaidyanathan, Hiroaki Yamada, Yingchao Yan
  • Publication number: 20030156789
    Abstract: A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).
    Type: Application
    Filed: February 15, 2002
    Publication date: August 21, 2003
    Inventors: Jyoti Kiron Bhardwaj, Robert James Brainard, David J. Chapman, Douglas E. Crafts, Zi-Wen Dong, David Dougherty, Erik W. Egan, James F. Farrell, Mark B. Farrelly, Niranjan Gopinathan, Kenzo Ishida, David K. Nakamoto, Thomas Thuan Nguyen, Suresh Ramalingam, Steven M. Swain, Sanjay M. Thekdi, Anantharaman Vaidyanathan, Hiroaki Yamada, Yingchao Yan
  • Patent number: 6606425
    Abstract: An optical component package, in which a transfer molded layer of material (e.g., syntactic foam in one embodiment) is formed at least partially around, or entirely around, the optical component to provide structural and thermal insulation around the component. The optical component may be a planar lightwave circuit (PLC), with a protective passivation layer formed between the PLC and the layer of syntactic foam, to de-couple stresses and thermal transfer between the PLC and the layer of syntactic foam. Strengthening caps, fiber assemblies, and a heater may be provided with the PLC assembly, around which the layer of syntactic foam can also be formed. The protective passivation layer can also be formed between these structures and the syntactic foam; in one embodiment between at least two strengthening caps formed on opposing edges of the PLC. The disclosed package provides numerous structural, thermal and size benefits.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: August 12, 2003
    Assignee: JDS Uniphase Corporation
    Inventors: Douglas E. Crafts, Kenzo Ishida, David J. Chapman, Duane Cook, James F. Farrell, Suresh Ramalingam, Steven M. Swain
  • Patent number: 6583388
    Abstract: An optical component package, having an insulative buffer placed against the component, enclosing a first insulative cavity against a temperature-sensitive portion of the component. An outer package provides additional insulation for the component. The buffer may be formed of a soft insulative material, and pressed against the component by an inner surface of the outer package. For the PLC embodiments disclosed, the buffer is planar and includes a frame projecting from its perimeter toward the component to form the cavity. A heater may be positioned proximate the optical component to control its temperature, in which case a second buffer may be placed against the heater, enclosing a second insulative cavity against the heater, aligned with the temperature-sensitive portion of the component. The buffers and insulative cavities of the present invention provide important insulation for optical areas requiring precise temperature control for proper operation.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: June 24, 2003
    Assignee: JDS Uniphase Corporation
    Inventors: Douglas E. Crafts, David J. Chapman, Steven M. Swain
  • Publication number: 20030089694
    Abstract: An optical component package, having an insulative buffer placed against the component, enclosing a first insulative cavity against a temperature-sensitive portion of the component. An outer package provides additional insulation for the component. The buffer may be formed of a soft insulative material, and pressed against the component by an inner surface of the outer package. For the PLC embodiments disclosed, the buffer is planar and includes a frame projecting from its perimeter toward the component to form the cavity. A heater may be positioned proximate the optical component to control its temperature, in which case a second buffer may be placed against the heater, enclosing a second insulative cavity against the heater, aligned with the temperature-sensitive portion of the component. The buffers and insulative cavities of the present invention provide important insulation for optical areas requiring precise temperature control for proper operation.
    Type: Application
    Filed: November 13, 2001
    Publication date: May 15, 2003
    Applicant: Scion Photonics, Inc.
    Inventors: Douglas E. Crafts, David J. Chapman, Steven M. Swain
  • Patent number: 5871626
    Abstract: A cathode contact device is provided for providing particle deposition from an anode source onto a target surface of a working piece. The working piece has a first electrically conductive continuous contact surrounding the target surface. The cathode contact device includes a second electrically conductive continuous contact adapted for frictionally contacting the first contact along a continuous path located on the first contact. The second contact further has an inner periphery defining an aperture for passing therethrough the particles onto the target surface. Additionally, the cathode contact device includes a circuit for electrically coupling the second contact to an electrical current supply.
    Type: Grant
    Filed: October 17, 1997
    Date of Patent: February 16, 1999
    Assignee: Intel Corporation
    Inventors: Douglas E. Crafts, Steven M. Swain, Kenji Takahashi, Hirofumi Ishida
  • Patent number: 5807469
    Abstract: A cathode contact device is provided for providing particle deposition from an anode source onto a target surface of a working piece. The working piece has a first electrically conductive continuous contact surrounding the target surface. The cathode contact device includes a second electrically conductive continuous contact adapted for frictionally contacting the first contact along a continuous path located on the first contact. The second contact further has an inner periphery defining an aperture for passing therethrough the particles onto the target surface. Additionally, the cathode contact device includes a circuit for electrically coupling the second contact to an electrical current supply.
    Type: Grant
    Filed: September 27, 1995
    Date of Patent: September 15, 1998
    Assignee: Intel Corporation
    Inventors: Douglas E. Crafts, Steven M. Swain, Kenji Takahashi, Hirofumi Ishida