Patents by Inventor Steven Mankevich

Steven Mankevich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11888398
    Abstract: A power conversion system for mobile power generation and support is configured to be adaptable to different, time-varying mission requirements, system statuses, environmental contexts, and for different power sources and power loads. Adaptability includes real-time, on-the-fly adaptation from DC-to-AC, AC-to-DC, AC-to-AC, and DC-to-DC conversion; adaptations from buck conversion to boost conversation; and from current source conversion mode to voltage source conversion mode. In an embodiment, individual internal power stages for one or more power electronics building blocks are equipped with multiple internal current routing switches/contactors. Current flow may be dynamically re-routed along different current paths associated with an H-bridge of each power stage. Alternative current routings allow for the introduction or removal of inductors at critical points along the current path. Such on-the-fly current rerouting, at the power transistor level, enables the adaptability of the power converter.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: January 30, 2024
    Assignee: GE Energy Power Conversion Technology Limited
    Inventors: Zhi Zhou, Steven Mankevich
  • Patent number: 11831250
    Abstract: A multi-switch types hybrid power electronics build block (MST HPEBB) least replaceable unit converter employs a first low voltage side (for example, 1000 volt power switches) and a second high voltage side (for example, 3000 volt power switches). The MST HPEBB LRU employs multiple bridge converters connected in series and/or in parallel, and coupled in part by a 1:1 transformer. To reduce weight and volume requirements compared to known PEBB LRUs, different power switch types are employed in different bridge converters. For example, in one exemplary embodiment, low voltage 1.7 kVolt SiC MOSFETS may be employed on the lower voltage side, while at least some 4.5 kVolt Silicon IGBTs may be employed on the high voltage side.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: November 28, 2023
    Assignee: General Electric Company
    Inventors: Zhi Zhou, Steven Mankevich
  • Publication number: 20220416660
    Abstract: A power conversion system for mobile power generation and support is configured to be adaptable to different, time-varying mission requirements, system statuses, environmental contexts, and for different power sources and power loads. Adaptability includes real-time, on-the-fly adaptation from DC-to-AC, AC-to-DC, AC-to-AC, and DC-to-DC conversion; adaptations from buck conversion to boost conversation; and from current source conversion mode to voltage source conversion mode. In an embodiment, individual internal power stages for one or more power electronics building blocks are equipped with multiple internal current routing switches/contactors. Current flow may be dynamically re-routed along different current paths associated with an H-bridge of each power stage. Alternative current routings allow for the introduction or removal of inductors at critical points along the current path. Such on-the-fly current rerouting, at the power transistor level, enables the adaptability of the power converter.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Applicant: GE Energy Power Conversion Technology Limited
    Inventors: Zhi Zhou, Steven Mankevich
  • Publication number: 20210344283
    Abstract: A multi-switch types hybrid power electronics build block (MST HPEBB) least replaceable unit converter employs a first low voltage side (for example, 1000 volt power switches) and a second high voltage side (for example, 3000 volt power switches). The MST HPEBB LRU employs multiple bridge converters connected in series and/or in parallel, and coupled in part by a 1:1 transformer. To reduce weight and volume requirements compared to known PEBB LRUs, different power switch types are employed in different bridge converters. For example, in one exemplary embodiment, low voltage 1.7 kVolt SiC MOSFETS may be employed on the lower voltage side, while at least some 4.5 kVolt Silicon IGBTs may be employed on the high voltage side.
    Type: Application
    Filed: June 25, 2021
    Publication date: November 4, 2021
    Applicant: General Electric Company
    Inventors: Zhi Zhou, Steven Mankevich