Patents by Inventor Steven Michael Hughes

Steven Michael Hughes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965598
    Abstract: A monolithic break-seal includes a membrane that separates an outer ring from an inner ring. The inner ring is bonded to a vacuum cell and the outer ring is bonded to a vacuum interface. To protect against unintentional breakage of the membrane, a surface of the outer ring not bonded to the vacuum interface contacts the vacuum cell. An external vacuum system evacuates the vacuum cell through an aperture of the break-seal. Once a target vacuum level is reached for the vacuum cell, a cap is bonded to the inner ring, blocking the aperture and hermetically sealing the vacuum cell. The membrane is broken so that the hermetically sealed vacuum cell can be separated from the vacuum interface to which the outer ring remains bonded.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: April 23, 2024
    Assignee: ColdQuanta, Inc.
    Inventor: Steven Michael Hughes
  • Publication number: 20240063295
    Abstract: A pulsed-laser applies short (e.g., less than 10 pico-seconds) pulses to modify quantum particle (e.g., alkali-metal and alkaline-earth-metal atoms) ultra-high vacuum (UHV) cells to bond, ablate, and/or chemically modify vacuum-facing surfaces of the cell. The pulses are generated outside the cell and are transmitted through a vacuum-boundary wall. In one example, one vacuum-boundary wall is first contact bonded to other vacuum boundary walls at a relatively low temperature (below 200° C.), sufficient to form a temporary hermetic seal. Pulsed laser bonding is used to reinforce the contact bonds, correcting defects and generally increasing the robustness of the seal. The pulses provide high peak power to ensure strong bonds, but low total heat so as to avoid heat damage to nearby cell components and to limit quantum-particle sorbtion to and into cell walls.
    Type: Application
    Filed: August 30, 2023
    Publication date: February 22, 2024
    Inventor: Steven Michael Hughes
  • Publication number: 20230365404
    Abstract: A process for manufacturing custom optically active quantum-particle cells includes forming a pre-customization assembly and then, in response to receipt of specifications for quantum-particle cells, performing a customization subprocess on the pre-customization assembly to yield custom quantum-particle cells, e.g., vapor cells, vacuum cells, micro-channel cells containing alkali metal or alkaline-earth metal ions or neutral atoms. The customization can include for metasurface structures on cell walls, e.g., to serve as anti-reflection coatings, lenses, etc., and introducing quantum particles (e.g., alkali metal atoms). A cover can be bonded to hermetically seal the assembly, which can then be diced to yield plural separated custom optically active quantum-particle cells.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 16, 2023
    Inventor: Steven Michael Hughes
  • Patent number: 11776797
    Abstract: A vacuum cell is described. The vacuum cell includes an inner chamber, a buffer channel, and a buffer ion pump. The buffer channel is fluidically isolated from the inner chamber and fluidically isolated from an ambient external to the vacuum cell. The buffer ion pump is fluidically coupled to the buffer channel and fluidically isolated from the ambient and the inner chamber.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: October 3, 2023
    Assignee: ColdQuanta, Inc.
    Inventor: Steven Michael Hughes
  • Publication number: 20230298880
    Abstract: A vacuum system is described. The vacuum system includes a vacuum cell and an ion trap. The vacuum cell includes walls having an inner surface that form at least a portion of a vacuum chamber. At least a portion of the inner surface has a topography including structures therein. The structures include a getter material. The ion trap is within the vacuum chamber.
    Type: Application
    Filed: March 15, 2023
    Publication date: September 21, 2023
    Inventors: Steven Michael Hughes, Clinton Cahall, Steffen Michael Kross, James S. Hale, Hugo Leon, Matthew Barton Jaskot
  • Publication number: 20230260670
    Abstract: A drop-in multi-optics module for a quantum-particle (e.g., rubidium, cesium) cell provides for more convenient and cost-effective manufacture of such cells (including vacuum cells, cold/ultra-cold matter cells, vapor cells, and channel cells). In a 3D printing approach, a model of a frame augmented by buffer material is 3D printed. The buffer material is removed from the augmented frame to achieved desired dimensions with greater precision than could be achieved by 3D printing the frame directly. Optical and, in some cases, other components are attached to the frame to realize the multi-optics drop-in module. Alternatively, the module can be formed by cutting out portions of a metal sheet and then folding the resulting 2D preform.
    Type: Application
    Filed: October 4, 2022
    Publication date: August 17, 2023
    Inventors: Steven Michael Hughes, Christopher Robert Sheridan, III
  • Publication number: 20230246117
    Abstract: A quantum-particle cell manufacturing process includes coating a substrate with transparent conductive oxide (TCO) such as indium tin oxide (ITO). Regions of the TCO are then transformed, e.g., by pulsed-laser annealing, to increase their resistivity. The annealed region then electrically isolates adjacent higher conductivity and lower resistivity regions, which can serve as field plates. At least one annealed region extends from the cell interior through a bond between the substrate and sidewalls and into the cell exterior so that adjacent unannealed regions can serve as independently controllable feedthroughs. The annealing does not significantly affect the TCO thickness so the bond between the substrate and the sidewall structure remains intact and the completed quantum particle cell can be hermetically sealed.
    Type: Application
    Filed: January 11, 2023
    Publication date: August 3, 2023
    Inventor: Steven Michael Hughes
  • Publication number: 20230194884
    Abstract: Beamformers are formed (e.g., carved) from a stack of transparent sheets. A rear face of each sheet has a reflective coating. The reflectivities of the coatings vary monotonically with sheet position within the stack. The sheets are tilted relative to the intended direction of an input beam and then bonded to form the stack. The carving can include dicing the stack to yield stacklets, and polishing the stacklets to form beamformers. Each beamformer is thus a stack of beamsplitters, including a front beamsplitter in the form of a triangular or trapezoidal prism, and one or more beamsplitters in the form of rhomboid prisms. In use, a beamformer forms an output beam from an input beam. More specifically, the beamformer splits an input beam into plural output beam components that collectively constitute an output beam that differs in cross section from the input beam.
    Type: Application
    Filed: February 14, 2023
    Publication date: June 22, 2023
    Inventor: Steven Michael Hughes
  • Patent number: 11604362
    Abstract: Beamformers are formed (e.g., carved) from a stack of transparent sheets. A rear face of each sheet has a reflective coating. The reflectivities of the coatings vary monotonically with sheet position within the stack. The sheets are tilted relative to the intended direction of an input beam and then bonded to form the stack. The carving can include dicing the stack to yield stacklets, and polishing the stacklets to form beamformers. Each beamformer is thus a stack of beamsplitters, including a front beamsplitter in the form of a triangular or trapezoidal prism, and one or more beamsplitters in the form of rhomboid prisms. In use, a beamformer forms an output beam from an input beam. More specifically, the beamformer splits an input beam into plural output beam components that collectively constitute an output beam that differs in cross section from the input beam.
    Type: Grant
    Filed: June 15, 2019
    Date of Patent: March 14, 2023
    Assignee: ColdQuanta, Inc.
    Inventor: Steven Michael Hughes
  • Publication number: 20230070293
    Abstract: Metamaterial optics are integrated with vacuum-boundary walls of ultra-high-vacuum (UHV) cells to manipulate light in a manner analogous to various bulk optical elements including lenses, mirrors, beam splitters, polarizers, waveplate, wave guides, frequency modulators, and amplitude modulators. For example, UHV cells can have metasurface lenses formed on interior and/or exterior surfaces on one or more of their vacuum-boundary walls. Each metasurface lens can include a plurality of mesas with the same height and various cross-sectional dimensions. The uses of metasurface lenses allows through-going laser beams to be expanded, collimated or focused without using bulky refractive optics. Each metasurface lens can be formed on a cell wall using photolithographic or other techniques.
    Type: Application
    Filed: May 24, 2022
    Publication date: March 9, 2023
    Inventors: Taek il OH, Steven Michael HUGHES
  • Publication number: 20220390016
    Abstract: A monolithic break-seal includes a membrane that separates an outer ring from an inner ring. The inner ring is bonded to a vacuum cell and the outer ring is bonded to a vacuum interface. To protect against unintentional breakage of the membrane, a surface of the outer ring not bonded to the vacuum interface contacts the vacuum cell. An external vacuum system evacuates the vacuum cell through an aperture of the break-seal. Once a target vacuum level is reached for the vacuum cell, a cap is bonded to the inner ring, blocking the aperture and hermetically sealing the vacuum cell. The membrane is broken so that the hermetically sealed vacuum cell can be separated from the vacuum interface to which the outer ring remains bonded.
    Type: Application
    Filed: February 24, 2022
    Publication date: December 8, 2022
    Inventor: Steven Michael Hughes
  • Publication number: 20220291268
    Abstract: An electromagnetic field detector including a vapor cell, an excitation system, and a frequency tuner is described. The vapor cell has a plurality of quantum particles therein. The excitation system excites the quantum particles to a first Rydberg state. The first Rydberg state has a transition to a second Rydberg state at a first frequency. The frequency tuner generates a tunable field in a portion of the vapor cell. The tunable field shifts the first Rydberg state and/or the second Rydberg state such that the transition to the second Rydberg state is at a second frequency different from the first frequency. The detection frequency range for the electromagnetic field detector is continuous and includes the first frequency and the second frequency.
    Type: Application
    Filed: March 9, 2022
    Publication date: September 15, 2022
    Inventors: Dana Zachary Anderson, Haoquan Fan, Ying-Ju Wang, Eric Magnuson Bottomley, Steven Michael Hughes
  • Publication number: 20220262929
    Abstract: A pulsed-laser applies short (e.g., less than 10 pico-seconds) pulses to modify quantum particle (e.g., alkali-metal and alkaline-earth-metal atoms) ultra-high vacuum (UHV) cells to bond, ablate, and/or chemically modify vacuum-facing surfaces of the cell. The pulses are generated outside the cell and are transmitted through a vacuum-boundary wall. In one example, one vacuum-boundary wall is first contact bonded to other vacuum boundary walls at a relatively low temperature (below 200° C.), sufficient to form a temporary hermetic seal. Pulsed laser bonding is used to reinforce the contact bonds, correcting defects and generally increasing the robustness of the seal. The pulses provide high peak power to ensure strong bonds, but low total heat so as to avoid heat damage to nearby cell components and to limit quantum-particle sorbtion to and into cell walls.
    Type: Application
    Filed: October 4, 2021
    Publication date: August 18, 2022
    Inventor: Steven Michael Hughes
  • Publication number: 20220262609
    Abstract: A vacuum cell is described. The vacuum cell includes an inner chamber, a buffer channel, and a buffer ion pump. The buffer channel is fluidically isolated from the inner chamber and fluidically isolated from an ambient external to the vacuum cell. The buffer ion pump is fluidically coupled to the buffer channel and fluidically isolated from the ambient and the inner chamber.
    Type: Application
    Filed: February 8, 2022
    Publication date: August 18, 2022
    Inventor: Steven Michael Hughes
  • Publication number: 20220172935
    Abstract: A sputter-ion-pump system includes a sputter ion pump and an electronic drive. The electronic drive supplies a voltage across the ion pump to establish, in cooperation with a magnetic field, a Penning trap within the ion pump. A current sensor measures the Penning-trap current across the Penning trap. The Penning trap is used as an indication of pressure within the ion pump or a vacuum chamber including or in fluid communication with the ion pump. The pressure information can be used to determine flow rates, e.g., due to a load, outgassing, and/or leakage from an ambient.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 2, 2022
    Inventors: Steven Michael Hughes, Farhad Majdeteimouri
  • Patent number: 11293551
    Abstract: A monolithic break-seal includes a membrane that separates an outer ring from an inner ring. The inner ring is bonded to a vacuum cell and the outer ring is bonded to a vacuum interface. To protect against unintentional breakage of the membrane, a surface of the outer ring not bonded to the vacuum interface contacts the vacuum cell. An external vacuum system evacuates the vacuum cell through an aperture of the break-seal. Once a target vacuum level is reached for the vacuum cell, a cap is bonded to the inner ring, blocking the aperture and hermetically sealing the vacuum cell. The membrane is broken so that the hermetically sealed vacuum cell can be separated from the vacuum interface to which the outer ring remains bonded.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: April 5, 2022
    Assignee: ColdQuanta, Inc.
    Inventor: Steven Michael Hughes
  • Patent number: 11289315
    Abstract: A sputter-ion-pump system includes a sputter ion pump and an electronic drive. The electronic drive supplies a voltage across the ion pump to establish, in cooperation with a magnetic field, a Penning trap within the ion pump. A current sensor measures the Penning-trap current across the Penning trap. The Penning trap is used as an indication of pressure within the ion pump or a vacuum chamber including or in fluid communication with the ion pump. The pressure information can be used to determine flow rates, e.g., due to a load, outgassing, and/or leakage from an ambient.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: March 29, 2022
    Assignee: ColdQuanta, Inc.
    Inventors: Steven Michael Hughes, Farhad Majdeteimouri
  • Publication number: 20220084709
    Abstract: An ultra-high-vacuum (UHV) cell includes an integrated guide stack (IGS) as part of a boundary between an internal vacuum and an external ambient. The IGS is formed by bonding together plural integrated guide components (IGCs). Each IGC includes (prior to the bonding) electrical and/or electro-magnetic (EM) guides defined within a bulk material such as glass or silicon. The electrical guides can be, for example, conductive paths or vias, while the EM guides can include microwave or other RF guides, optical fibers and/or paths along which an index of refraction has been modified along an desired optical path. EM and electrical connections between IGCs can be formed after the IGCs are bonded together to form the IGS. Use of an IGS as a vacuum boundary can provide substantial functionality for manipulating and interrogating quantum particles; the functionality can include, for example, the ability to regulate fields within the UHV cell.
    Type: Application
    Filed: August 19, 2021
    Publication date: March 17, 2022
    Inventor: Steven Michael HUGHES
  • Publication number: 20210410266
    Abstract: A vacuum cell provides for electric field control within an ultra-high vacuum (UHV) for cold-neutral-atom quantum computing and other quantum applications. Electrode assemblies extend through vacuum cell walls. Prior to cell assembly, contacts are bonded to respective locations on the ambient-facing surfaces of the walls. Trenches are formed in the vacuum-facing surfaces of walls and via holes are formed, extending from trenches through the wall and into the contacts. Plating conductive material into the trenches and via holes forms the electrodes and vias. The electrodes are contained by the trenches and do not extend beyond the trenches so as to avoid interfering with the bonding of components to the vacuum-facing surfaces of the walls. The vias extend into the contacts to ensure good electrical contact. An electric-field controller applies electric potentials to the electrodes (via the contacts) to control electric fields within the vacuum.
    Type: Application
    Filed: June 6, 2021
    Publication date: December 30, 2021
    Inventors: Mark SAFFMAN, Thomas William NOEL, Steven Michael HUGHES
  • Patent number: 10975852
    Abstract: A cold-atom cell is formed by machining a block of silicon to define sites for an atom source chamber, an atom manipulation chamber, and an ion-pump chamber. A polished silicon panel is frit-bonded to an unpolished (due to machining) chamber wall (which would be difficult and costly to polish). The polished panel can then serve as a reflector or a sight for anodic bonding. A solid-phase atom source provides for vapor phase atoms in the source chamber. The source chamber also includes carbon and gold to regulate the atom pressure by sorbing and desorbing thermal atoms. The atom manipulation chamber includes components for magneto-optical trap and an atom chip, e.g., for forming a Bose-Einstein condensate. The ion-pump chamber serves as the site for an ion pump. By integrating the ion pump into the body of the cold-atom cell, a more compact, reliable, and robust cold-atom cell is achieved.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: April 13, 2021
    Assignee: ColdQuanta, Inc.
    Inventor: Steven Michael Hughes