Patents by Inventor Steven Michael Patterson

Steven Michael Patterson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970614
    Abstract: Shelf-stable, rapid crosslinking, “all-in-one” pastes useful as “inks” in additive manufacturing are provided. These pastes exhibit desirable rheological flow properties and crosslinking upon exposure to UV light. The pastes are based on vinylsilyl-functionalized, completely amorphous, linear terpolysiloxanes containing predominantly dimethylsiloxy- repeat units with small amounts of diphenylsiloxy-, methylphenylsiloxy-, diethylsiloxy-, and/or methyltrifluoroalkylsiloxy- crystallization disruptors. The base polymers are preferably compounded with a trimethylsilylated-hydrophobic silica filler, thixotropic flow agent, hydrosilyl-functionalized oligomeric crosslinker, and a catalytic system comprising platinum (II) acetylacetonate or trimethyl(methylcyclopentadienyl)-platinum (IV), and diethyl azodicarboxylate.
    Type: Grant
    Filed: May 4, 2023
    Date of Patent: April 30, 2024
    Assignee: Honeywell Federal Manufacturing & Technologies, LLC
    Inventors: Jamie Michael Messman, Steven Michael Patterson, Petar Dvornic, Alisa Zlatanic, James Beach
  • Publication number: 20230303840
    Abstract: Shelf-stable, rapid crosslinking, “all-in-one” pastes useful as “inks” in additive manufacturing are provided. These pastes exhibit desirable rheological flow properties and crosslinking upon exposure to UV light. The pastes are based on vinylsilyl-functionalized, completely amorphous, linear terpolysiloxanes containing predominantly dimethylsiloxy- repeat units with small amounts of diphenylsiloxy-, methylphenylsiloxy-, diethylsiloxy-, and/or methyltrifluoroalkylsiloxy- crystallization disruptors. The base polymers are preferably compounded with a trimethylsilylated-hydrophobic silica filler, thixotropic flow agent, hydrosilyl-functionalized oligomeric crosslinker, and a catalytic system comprising platinum (II) acetylacetonate or trimethyl(methylcyclopentadienyl)-platinum (IV), and diethyl azodicarboxylate.
    Type: Application
    Filed: May 4, 2023
    Publication date: September 28, 2023
    Inventors: Jamie Michael Messman, Steven Michael Patterson, Petar Dvornic, Alisa Zlatanic, James Beach
  • Patent number: 11680167
    Abstract: Shelf-stable, rapid crosslinking, “all-in-one” pastes useful as “inks” in additive manufacturing are provided. These pastes exhibit desirable rheological flow properties and crosslinking upon exposure to UV light. The pastes are based on vinylsilyl-functionalized, completely amorphous, linear terpolysiloxanes containing predominantly dimethylsiloxy-repeat units with small amounts of diphenylsiloxy-, methylphenylsiloxy-, diethylsiloxy-, and/or methyltrifluoroalkylsiloxy-crystallization disruptors. The base polymers are preferably compounded with a trimethylsilylated-hydrophobic silica filler, thixotropic flow agent, hydrosilyl-functionalized oligomeric crosslinker, and a catalytic system comprising platinum(II) acetylacetonate or trimethyl(methylcyclopentadienyl)-platinum(IV), and diethyl azodicarboxylate.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: June 20, 2023
    Assignee: Honeywell Federal Manufacturing & Technologies, LLC
    Inventors: Jamie Michael Messman, Steven Michael Patterson, Petar Dvornic, Alisa Zlatanic, James Beach
  • Patent number: 11512201
    Abstract: Shelf-stable, rapid crosslinking, “all-in-one” pastes useful as “inks” in additive manufacturing are provided. These pastes exhibit desirable rheological flow properties and crosslinking upon exposure to UV light. The pastes are based on vinylsilyl-functionalized, completely amorphous, linear terpolysiloxanes containing predominantly dimethylsiloxy-repeat units with small amounts of diphenylsiloxy-, methylphenylsiloxy-, diethylsiloxy-, and/or methyltrifluoroalkylsiloxy-crystallization disruptors. The base polymers are preferably compounded with a trimethylsilylated-hydrophobic silica filler, thixotropic flow agent, hydrosilyl-functionalized oligomeric crosslinker, and a catalytic system comprising platinum(II) acetylacetonate or trimethyl(methylcyclopentadienyl)-platinum(IV), and diethyl azodicarboxylate.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: November 29, 2022
    Assignee: Honeywell Federal Manufacturing & Technologies, LLC
    Inventors: Jamie Michael Messman, Steven Michael Patterson, Petar Dvornic, Alisa Zlatanic, James Beach
  • Publication number: 20220251384
    Abstract: Shelf-stable, rapid crosslinking, “all-in-one” pastes useful as “inks” in additive manufacturing are provided. These pastes exhibit desirable rheological flow properties and crosslinking upon exposure to UV light. The pastes are based on vinylsilyl-functionalized, completely amorphous, linear terpolysiloxanes containing predominantly dimethylsiloxy-repeat units with small amounts of diphenylsiloxy-, methylphenylsiloxy-, diethylsiloxy-, and/or methyltrifluoroalkylsiloxy-crystallization disruptors. The base polymers are preferably compounded with a trimethylsilylated-hydrophobic silica filler, thixotropic flow agent, hydrosilyl-functionalized oligomeric crosslinker, and a catalytic system comprising platinum(II) acetylacetonate or trimethyl(methylcyclopentadienyl)-platinum(IV), and diethyl azodicarboxylate.
    Type: Application
    Filed: May 11, 2021
    Publication date: August 11, 2022
    Inventors: Jamie Michael Messman, Steven Michael Patterson, Petar Dvornic, Alisa Zlatanic, James Beach
  • Publication number: 20220251383
    Abstract: Shelf-stable, rapid crosslinking, “all-in-one” pastes useful as “inks” in additive manufacturing are provided. These pastes exhibit desirable rheological flow properties and crosslinking upon exposure to UV light. The pastes are based on vinylsilyl-functionalized, completely amorphous, linear terpolysiloxanes containing predominantly dimethylsiloxy- repeat units with small amounts of diphenylsiloxy-, methylphenylsiloxy-, diethylsiloxy-, and/or methyltrifluoroalkylsiloxy- crystallization disruptors. The base polymers are preferably compounded with a trimethylsilylated-hydrophobic silica filler, thixotropic flow agent, hydrosilyl-functionalized oligomeric crosslinker, and a catalytic system comprising platinum(II) acetylacetonate or trimethyl(methylcyclopentadienyl)-platinum(IV), and diethyl azodicarboxylate.
    Type: Application
    Filed: March 4, 2021
    Publication date: August 11, 2022
    Inventors: Jamie Michael Messman, Steven Michael Patterson, Petar Dvornic, Alisa Zlatanic, James Beach