Patents by Inventor STEVEN NIELS CHRISTENSEN

STEVEN NIELS CHRISTENSEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11104004
    Abstract: Systems and corresponding control methods providing a ballistic robot that flies on a trajectory after being released (e.g., in non-powered flight as a ballistic body) from a launch mechanism. The ballistic robot is adapted to control its position and/or inflight movements by processing data from onboard and offboard sensors and by issuing well-timed control signals to one or more onboard actuators to achieve an inflight controlled motion. The actuators may move an appendage such as an arm or leg of the robot or may alter the configuration of one or more body links (e.g., to change from an untucked configuration to a tucked configuration), while other embodiments may trigger a drive mechanism of an inertia moving assembly to change/move the moment of inertia of the flying body. In-flight controlled movements are performed to achieve a desired or target pose and orientation of the robot during flight and upon landing.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: August 31, 2021
    Assignee: Disney Enterprises, Inc.
    Inventors: Anthony Paul Dohi, Steven Niels Christensen, Mark Sox Setrakian, David Loyal Christensen, Grant Masaru Imahara, Morgan T. Pope, Scott Frazier Watson, Günter D. Niemeyer
  • Publication number: 20210001485
    Abstract: Systems and corresponding control methods providing a ballistic robot that flies on a trajectory after being released (e.g., in non-powered flight as a ballistic body) from a launch mechanism. The ballistic robot is adapted to control its position and/or inflight movements by processing data from onboard and offboard sensors and by issuing well-timed control signals to one or more onboard actuators to achieve an inflight controlled motion. The actuators may move an appendage such as an arm or leg of the robot or may alter the configuration of one or more body links (e.g., to change from an untucked configuration to a tucked configuration), while other embodiments may trigger a drive mechanism of an inertia moving assembly to change/move the moment of inertia of the flying body. Inflight controlled movements are performed to achieve a desired or target pose and orientation of the robot during flight and upon landing.
    Type: Application
    Filed: September 23, 2020
    Publication date: January 7, 2021
    Inventors: ANTHONY PAUL DOHI, STEVEN NIELS CHRISTENSEN, MARK SOX SETRAKIAN, DAVID LOYAL CHRISTENSEN, GRANT MASARU IMAHARA, MORGAN T. POPE, SCOTT FRAZIER WATSON, GÜNTER D. NIEMEYER
  • Patent number: 10807244
    Abstract: Systems and corresponding control methods providing a ballistic robot that flies on a trajectory after being released (e.g., in non-powered flight as a ballistic body) from a launch mechanism. The ballistic robot is adapted to control its position and/or inflight movements by processing data from onboard and offboard sensors and by issuing well-timed control signals to one or more onboard actuators to achieve an inflight controlled motion. The actuators may move an appendage such as an arm or leg of the robot or may alter the configuration of one or more body links (e.g., to change from an untucked configuration to a tucked configuration), while other embodiments may trigger a drive mechanism of an inertia moving assembly to change/move the moment of inertia of the flying body. Inflight controlled movements are performed to achieve a desired or target pose and orientation of the robot during flight and upon landing.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: October 20, 2020
    Assignee: Disney Enterprises, Inc.
    Inventors: Anthony Paul Dohi, Steven Niels Christensen, Mark Sox Setrakian, David Loyal Christensen, Grant Masaru Imahara, Morgan T. Pope, Scott Frazier Watson, Günter D. Niemeyer
  • Publication number: 20190329414
    Abstract: Systems and corresponding control methods providing a ballistic robot that flies on a trajectory after being released (e.g., in non-powered flight as a ballistic body) from a launch mechanism. The ballistic robot is adapted to control its position and/or inflight movements by processing data from onboard and offboard sensors and by issuing well-timed control signals to one or more onboard actuators to achieve an inflight controlled motion. The actuators may move an appendage such as an arm or leg of the robot or may alter the configuration of one or more body links (e.g., to change from an untucked configuration to a tucked configuration), while other embodiments may trigger a drive mechanism of an inertia moving assembly to change/move the moment of inertia of the flying body. Inflight controlled movements are performed to achieve a desired or target pose and orientation of the robot during flight and upon landing.
    Type: Application
    Filed: April 27, 2018
    Publication date: October 31, 2019
    Inventors: ANTHONY PAUL DOHI, STEVEN NIELS CHRISTENSEN, MARK SOX SETRAKIAN, DAVID LOYAL CHRISTENSEN, GRANT MASARU IMAHARA, MORGAN T. POPE, SCOTT FRAZIER WATSON, GÜNTER D. NIEMEYER