Patents by Inventor Steven Norberg

Steven Norberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230313271
    Abstract: This disclosure describes methods, non-transitory computer readable media, and systems that can use a machine-learning to determine factors or scores indicating an error level with which a given methylation assay detects methylation of cytosine bases. For instance, the disclosed systems use a machine-learning model to generate a bias score indicating a degree to which a given methylation assay errs in detecting cytosine methylation when specific sequence contexts surround such cytosines compared to other sequence contexts. The machine-learning model may take various forms of models, including a decision-tree model, a neural network, or a combination of a decision-tree model and a neural network. In some cases, the disclosed system combines or uses bias scores from multiple machine-learning models to generate a consensus bias score.
    Type: Application
    Filed: February 22, 2023
    Publication date: October 5, 2023
    Inventors: Steven Norberg, Luis Fernando Camarillo Guerrero, Colin Brown, Andrea Manzo, Sarah E. Shultzaberger, Michael Eberle, Sepideh Almasi, Suzanne Rohrback, Pascale Mathonet, Egor Dolzhenko
  • Publication number: 20220333157
    Abstract: Embodiments of systems, methods, and compositions provided herein relate to hollow beads encapsulating single cells. Some embodiments include performing multiple co-assays on a single cell encapsulated within a hollow bead, including nucleic acid sequencing, preparing nucleic acid libraries, determining methylation status, identifying genomic variants, or protein analysis.
    Type: Application
    Filed: May 16, 2022
    Publication date: October 20, 2022
    Inventors: Frank J. Steemers, Ramesh Ramji, Steven Norberg, Lena Christiansen, Dmitry K. Pokholok, Fan Zhang
  • Patent number: 11359226
    Abstract: Embodiments of systems, methods, and compositions provided herein relate to hollow beads encapsulating single cells. Some embodiments include performing multiple co-assays on a single cell encapsulated within a hollow bead, including nucleic acid sequencing, preparing nucleic acid libraries, determining methylation status, identifying genomic variants, or protein analysis.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: June 14, 2022
    Assignee: ILLUMINA, INC.
    Inventors: Frank J. Steemers, Ramesh Ramji, Steven Norberg, Lena Christiansen, Dmitry K. Pokholok, Fan Zhang
  • Publication number: 20210332349
    Abstract: Systems, methods, and compositions provided herein relate to preparation of beads encapsulating biomolecules for performing sequential reactions on the biomolecules. Some embodiments include preparation of nucleic acid reactions within the bead, wherein the bead includes pores that allow diffusion of molecules into or out of the beads while retaining other molecules of interest.
    Type: Application
    Filed: July 1, 2021
    Publication date: October 28, 2021
    Inventors: Steven Norberg, Dmitry Pokholok, Ramesh Ramji, Frank Steemers, Fan Zhang
  • Patent number: 11085036
    Abstract: Systems, methods, and compositions provided herein relate to preparation of beads encapsulating biomolecules for performing sequential reactions on the biomolecules. Some embodiments include preparation of nucleic acid reactions within the bead, wherein the bead includes pores that allow diffusion of molecules into or out of the beads while retaining other molecules of interest.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: August 10, 2021
    Assignee: Illumina, Inc.
    Inventors: Steven Norberg, Dmitry Pokholok, Ramesh Ramji, Frank J. Steemers, Fan Zhang
  • Publication number: 20200165650
    Abstract: A method for enriching a target nucleic acid comprising providing an endonuclease system having a crRNA or a derivative thereof, and a Cas protein or a variant thereof. The crRNA or the derivative thereof contains a target-specific nucleotide region substantially complementary to a region of the target nucleic acid; contacting the target nucleic acid with the endonuclease system to form a complex; and separating the complex and thereby enriching for the target nucleic acid.
    Type: Application
    Filed: October 21, 2019
    Publication date: May 28, 2020
    Inventors: Gordon M. Cann, Jeffrey G. Mandell, Alex Aravanis, Steven Norberg, Dmitry K. Pokholok, Frank J. Steemers, Farnaz Absalan, Leila Bazargan
  • Publication number: 20200131502
    Abstract: Systems, methods, and compositions provided herein relate to preparation of beads encapsulating biomolecules for performing sequential reactions on the biomolecules. Some embodiments include preparation of nucleic acid reactions within the bead, wherein the bead includes pores that allow diffusion of molecules into or out of the beads while retaining other molecules of interest.
    Type: Application
    Filed: October 24, 2019
    Publication date: April 30, 2020
    Inventors: Steven Norberg, Dmitry Pokholok, Ramesh Ramji, Frank J. Steemers, Fan Zhang
  • Publication number: 20190352591
    Abstract: Embodiments of systems, methods, and compositions provided herein relate to hollow beads encapsulating single cells. Some embodiments include performing multiple co-assays on a single cell encapsulated within a hollow bead, including nucleic acid sequencing, preparing nucleic acid libraries, determining methylation status, identifying genomic variants, or protein analysis.
    Type: Application
    Filed: April 15, 2019
    Publication date: November 21, 2019
    Inventors: Frank J. Steemers, Ramesh Ramji, Steven Norberg, Lena Christiansen, Dmitry K. Pokholok, Fan Zhang
  • Patent number: 10457969
    Abstract: A method for enriching a target nucleic acid comprising providing an endonuclease system having a crRNA or a derivative thereof, and a Cas protein or a variant thereof. The crRNA or the derivative thereof contains a target-specific nucleotide region substantially complementary to a region of the target nucleic acid; contacting the target nucleic acid with the endonuclease system to form a complex; and separating the complex and thereby enriching for the target nucleic acid.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: October 29, 2019
    Assignee: Illumina, Inc.
    Inventors: Gordon M. Cann, Jeffrey G. Mandell, Alex Aravanis, Steven Norberg, Dmitry K. Pokholok, Frank J. Steemers, Farnaz Absalan, Leila Bazargan
  • Publication number: 20180355348
    Abstract: Provided herein are methods for preparing sequencing libraries for determining the methylation status of nucleic acids from a plurality of single cells. The present methods combine split-and-pool combinatorial indexing and bisulfite treatment techniques to characterize the methylation profiles of large numbers of single cells quickly, accurately and inexpensively.
    Type: Application
    Filed: June 5, 2018
    Publication date: December 13, 2018
    Applicants: OREGON HEALTH & SCIENCE UNIVERSITY, ILLUMINA, INC.
    Inventors: Andrew C. Adey, Ryan Mulqueen, Frank J. Steemers, Dmitry K. Pokholok, Steven Norberg
  • Publication number: 20160017396
    Abstract: A method for enriching a target nucleic acid comprising providing an endonuclease system having a crRNA or a derivative thereof, and a Cas protein or a variant thereof. The crRNA or the derivative thereof contains a target-specific nucleotide region substantially complementary to a region of the target nucleic acid; contacting the target nucleic acid with the endonuclease system to form a complex; and separating the complex and thereby enriching for the target nucleic acid.
    Type: Application
    Filed: July 20, 2015
    Publication date: January 21, 2016
    Applicant: ILLUMINA, INC.
    Inventors: Gordon M. Cann, Jeffrey G. Mandell, Alex Aravanis, Steven Norberg, Dmitry K. Pokholok, Frank J. Steemers, Farnaz Absalan, Leila Bazargan