Patents by Inventor Steven P. CONSIGLIO

Steven P. CONSIGLIO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220044922
    Abstract: Dielectric films for semiconductor devices and methods of forming. A processing method includes forming a first film of a first dielectric material on a substrate by performing a first plurality of cycles of atomic layer deposition and, thereafter, heat-treating the first film, where a thickness of the first film is below a threshold thickness needed for spontaneous polarization in the first dielectric material. The processing method further includes forming a second film of a second dielectric material on the substrate by performing a second plurality of cycles of atomic layer deposition and, thereafter, heat-treating the second film, where a thickness of the second film is greater than the thickness of the first film, and the second film is ferroelectric or antiferroelectric. The first and second dielectric materials can include at least one metal oxide, for example zirconium oxide, hafnium oxide, or a laminate or mixture thereof.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 10, 2022
    Inventors: Dina H. Triyoso, Robert D. Clark, Steven P. Consiglio, Kandabara N. Tapily
  • Patent number: 9978649
    Abstract: A method is provided for solid source doping for source and drain extensions. According to one embodiment, the method includes providing a substrate containing fins of first and second film stacks, sacrificial gates across and on the fins of the first and second film stacks, where the first and second film stacks include alternating first and second films, and where the first films extend through sidewall spacers on the sacrificial gates, selectively forming a first mask layer on the sidewall spacers and on the first films of the first film stack, depositing a first dopant layer on the substrate, heat-treating the substrate to diffuse dopants from the first dopant layer into the first films of the second film stack to form doped first films in the second film stack, and removing the first mask layer from the substrate. The processing steps may be repeated for the second film stack.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: May 22, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Robert D. Clark, Steven P. Consiglio, Jeffrey Smith
  • Patent number: 9899224
    Abstract: A method is provided for forming an ultra-shallow boron doping region in a semiconductor device. The method includes depositing a diffusion filter layer on a substrate, the diffusion filter containing a boron nitride layer, a boron oxynitride layer, a silicon nitride layer, or a silicon oxynitride layer, and depositing a boron dopant layer on the diffusion filter layer, the boron dopant layer containing boron oxide, boron oxynitride, or a combination thereof, with the proviso that the diffusion filter layer and the boron dopant layer do not contain the same material. The method further includes heat-treating the substrate to form the ultra-shallow boron dopant region in the substrate by controlled diffusion of boron from the boron dopant layer through the diffusion filter layer and into the substrate.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: February 20, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Steven P. Consiglio, Robert D. Clark, David L. O'Meara
  • Publication number: 20170271212
    Abstract: A method is provided for solid source doping for source and drain extensions. According to one embodiment, the method includes providing a substrate containing fins of first and second film stacks, sacrificial gates across and on the fins of the first and second film stacks, where the first and second film stacks include alternating first and second films, and where the first films extend through sidewall spacers on the sacrificial gates, selectively forming a first mask layer on the sidewall spacers and on the first films of the first film stack, depositing a first dopant layer on the substrate, heat-treating the substrate to diffuse dopants from the first dopant layer into the first films of the second film stack to form doped first films in the second film stack, and removing the first mask layer from the substrate. The processing steps may be repeated for the second film stack.
    Type: Application
    Filed: March 21, 2017
    Publication date: September 21, 2017
    Inventors: Robert D. Clark, Steven P. Consiglio, Jeffrey Smith
  • Publication number: 20170084464
    Abstract: A germanium-containing semiconductor device and a method for forming a germanium-containing semiconductor device are described. The method includes providing a germanium-containing substrate, depositing an aluminum-containing diffusion barrier layer on the germanium-containing substrate, depositing a high-k layer on the aluminum-containing diffusion barrier layer, and exposing the high-k layer to atomic oxygen to reduce the equivalent oxide thickness (EOT) of the high-k layer while avoiding oxidizing the germanium-containing substrate. The germanium-containing semiconductor device includes a germanium-containing substrate, an aluminum-containing diffusion barrier layer on the germanium-containing substrate, and a high-k layer on the aluminum-containing diffusion barrier layer, where the high-k layer has been exposed to atomic oxygen to reduce the EOT of the high-k layer while avoiding oxidizing the germanium-containing substrate.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 23, 2017
    Inventors: Kandabara N. Tapily, Robert D. Clark, Steven P. Consiglio, Cory Wajda, Gerrit J. Leusink
  • Publication number: 20160260611
    Abstract: A method is provided for forming an ultra-shallow boron doping region in a semiconductor device. The method includes depositing a diffusion filter layer on a substrate, the diffusion filter containing a boron nitride layer, a boron oxynitride layer, a silicon nitride layer, or a silicon oxynitride layer, and depositing a boron dopant layer on the diffusion filter layer, the boron dopant layer containing boron oxide, boron oxynitride, or a combination thereof, with the proviso that the diffusion filter layer and the boron dopant layer do not contain the same material. The method further includes heat-treating the substrate to form the ultra-shallow boron dopant region in the substrate by controlled diffusion of boron from the boron dopant layer through the diffusion filter layer and into the substrate.
    Type: Application
    Filed: February 29, 2016
    Publication date: September 8, 2016
    Inventors: Steven P. Consiglio, Robert D. Clark, David L. O'Meara
  • Publication number: 20150255267
    Abstract: Embodiments of the invention describe methods for forming a semiconductor device. According to one embodiment, the method includes depositing an aluminum-doped high-k film on a substrate by atomic layer deposition (ALD) that includes: a) pulsing a metal-containing precursor gas into a process chamber containing the substrate, b) pulsing an aluminum-containing precursor gas into the process chamber, where a) and b) are sequentially performed without an intervening oxidation step, and c) pulsing an oxygen-containing gas into the process chamber. The method can further include heat-treating the aluminum-doped high-k film to crystallize or increase the crystallization of the film.
    Type: Application
    Filed: March 9, 2015
    Publication date: September 10, 2015
    Inventors: Kandabara N. Tapily, Robert D. Clark, Steven P. Consiglio, Cory Wajda, Gerrit J. Leusink
  • Patent number: 9064694
    Abstract: A method is provided for forming a nitrided high-k film in an atomic layer deposition process (ALD) process. The method includes receiving a substrate in a process chamber, maintaining the substrate at a temperature sufficient for ALD of a nitrided high-k film, and depositing the nitrided high-k film on the substrate by exposing the substrate to a gas pulse sequence that includes, in any order: a) exposing the substrate to a gas pulse comprising a metal-containing precursor, b) exposing the substrate to a gas pulse comprising an oxygen-containing gas, and c) exposing the substrate to a gas pulse comprising trisilylamine gas, where the exposing the substrate to the trisilylamine gas yields the nitrided high-k film that includes nitrogen and that is substantially free of silicon, and repeating the gas pulse sequence. A trisilylamine gas exposure may also be used to nitride a deposited high-k film.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: June 23, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Steven P Consiglio, Robert D Clark, Christian Dussarrat, Vincent Omarjee, Venkat Pallem, Glenn Kuchenbeiser
  • Patent number: 8722548
    Abstract: In one exemplary embodiment, a method includes: forming at least one first monolayer of first material on a surface of a substrate by performing a first plurality of cycles of atomic layer deposition; thereafter, annealing the formed at least one first monolayer of first material under a first inert atmosphere at a first temperature between about 650° C. and about 900° C.; thereafter, forming at least one second monolayer of second material by performing a second plurality of cycles of atomic layer deposition, where the formed at least one second monolayer of second material at least partially overlies the annealed at least one first monolayer of first material; and thereafter, annealing the formed at least one second monolayer of second material under a second inert atmosphere at a second temperature between about 650° C. and about 900° C.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: May 13, 2014
    Assignee: International Business Machines Corporation
    Inventors: Shintaro Aoyama, Robert D. Clark, Steven P. Consiglio, Marinus Hopstaken, Hemanth Jagannathan, Paul Charles Jamison, Gert Leusink, Barry Paul Linder, Vijay Narayanan, Cory Wajda
  • Publication number: 20140017907
    Abstract: A method is provided for forming a nitrided high-k film in an atomic layer deposition process (ALD) process. The method includes receiving a substrate in a process chamber, maintaining the substrate at a temperature sufficient for ALD of a nitrided high-k film, and depositing the nitrided high-k film on the substrate by exposing the substrate to a gas pulse sequence that includes, in any order: a) exposing the substrate to a gas pulse comprising a metal-containing precursor, b) exposing the substrate to a gas pulse comprising an oxygen-containing gas, and c) exposing the substrate to a gas pulse comprising trisilylamine gas, where the exposing the substrate to the trisilylamine gas yields the nitrided high-k film that includes nitrogen and that is substantially free of silicon, and repeating the gas pulse sequence. A trisilylamine gas exposure may also be used to nitride a deposited high-k film.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 16, 2014
    Inventors: Steven P. Consiglio, Robert D. Clark, Christian Dussarrat, Vincent Omarjee, Venkat Pallem, Glenn Kuchenbeiser
  • Publication number: 20120074533
    Abstract: In one exemplary embodiment, a method includes: forming at least one first monolayer of first material on a surface of a substrate by performing a first plurality of cycles of atomic layer deposition; thereafter, annealing the formed at least one first monolayer of first material under a first inert atmosphere at a first temperature between about 650° C. and about 900° C.; thereafter, forming at least one second monolayer of second material by performing a second plurality of cycles of atomic layer deposition, where the formed at least one second monolayer of second material at least partially overlies the annealed at least one first monolayer of first material; and thereafter, annealing the formed at least one second monolayer of second material under a second inert atmosphere at a second temperature between about 650° C. and about 900° C.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Applicants: Tokyo Electron (TEL)Limited, International Business Machines Corporation
    Inventors: Shintaro Aoyama, Robert D. Clark, Steven P. Consiglio, Marinus Hopstaken, Hemanth Jagannathan, Paul Charles Jamison, Gert Leusink, Barry Paul Linder, Vijay Narayanan, Cory Wajda
  • Publication number: 20110220148
    Abstract: A method for performing preventative maintenance in a substrate processing system is described. The method includes diagnosing a level of contamination in a substrate processing system, scheduling a wet clean process when necessary, and scheduling a dry clean process when necessary. The dry clean process may include an ozone cleaning process.
    Type: Application
    Filed: March 12, 2010
    Publication date: September 15, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Steven P. CONSIGLIO, Cory WAJDA, Robert D. CLARK