Patents by Inventor Steven P. Hotelling

Steven P. Hotelling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160062498
    Abstract: A touch input/output device for a computing device. The touch device includes a touch sensor for providing touch location information and a force sensor for providing force of touch information. The touch sensor determines touch location information. The force sensor determines the force of touch information. Both the touch sensor and the force sensor are integrated into a circuit responsive to signals, the signals occurring at discernible times in response to whether the signals are in response to contact or in response to an amount of force. Additionally, the touch device includes a circuit coupled to the touch sensor and to the force sensor, and capable of combining information from the touch sensors and from the force sensors.
    Type: Application
    Filed: June 4, 2015
    Publication date: March 3, 2016
    Inventors: Brian Q. Huppi, Martin P. Grunthaner, John G. Elias, Sinan Filiz, Steven P. Hotelling
  • Publication number: 20160062499
    Abstract: A touch sensor panel is disclosed. In some examples, the touch sensor panel comprises a first touch pixel electrode formed in a first layer, the first touch pixel electrode comprising a plurality of electrically coupled touch pixel segments separated by one or more touch pixel gaps. In some examples, the touch sensor panel comprises a sense connection formed in the first layer and coupled to the first touch pixel electrode, the sense connection configured to couple the first touch pixel electrode to sense circuitry. In some examples, the touch pixel segments and the touch pixel gaps are configured to provide optical uniformity on the touch sensor panel.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 3, 2016
    Inventors: James Edward Alexander PEDDER, David H.C. SHIH, Martin Paul GRUNTHANER, Steven P. HOTELLING
  • Publication number: 20160062497
    Abstract: An input/output device for a computing device including one or more touch sensors and one or more force sensors. The touch sensors sense data including one or more locations at which a contact or near-contact occurs. The force sensor sense data including a measure of an amount of force presented at the one or more locations at which a contact occurs. The touch sensors and the force sensors responsive to signals occurring in response to whether the signals are in response to contact or in response to an amount of force. The input/output device also includes one or more circuits coupled to the touch sensors and to the force sensors, and capable of combining information from both sensors.
    Type: Application
    Filed: June 4, 2015
    Publication date: March 3, 2016
    Inventors: Brian Q. Huppi, Martin P. Grunthaner, John G. Elias, Sinan Filiz, Steven P. Hotelling
  • Publication number: 20160062530
    Abstract: An electronic device that senses home button inputs through ultrasonic force sensing. The electronic device may correlate that amount of force that a user applies to the home button with a specific home button command. In certain embodiments, the system may combine the force of touch information with other information that is sensed for a particular touch to correlate the touch input with a greater number of home button commands. A home button embodiment discussed herein may include a home button image that is displayed on a touch sensitive panel. In other embodiments, a home button may be located outside of the boundaries of a touch sensitive panel.
    Type: Application
    Filed: June 17, 2015
    Publication date: March 3, 2016
    Inventors: Brian Q. Huppi, Martin P. Grunthaner, John G. Elias, Sinan Filiz, Steven P. Hotelling
  • Publication number: 20160054826
    Abstract: A force sensing device for computer or electronic devices. The force sensing device is configured to determine an amount of force applied, and changes in amounts of force applied, by the user when contacting a device, such as a touch device, and which can be incorporated into devices using touch recognition, touch elements of a graphical user interface, and touch input or manipulation in an application program. Additionally, the force sensing device may determine an amount of force applied, and changes in amounts of force applied, by the user when contacting a device, such as a touch device, and in response thereto, provide additional functions available to a user of a touch device, track pad, or the like.
    Type: Application
    Filed: June 1, 2015
    Publication date: February 25, 2016
    Inventors: Brian Q. Huppi, Martin P. Grunthaner, John G. Elias, Sinan Filiz, Steven P. Hotelling
  • Patent number: 9262029
    Abstract: A multipoint touch surface controller is disclosed herein. The controller includes an integrated circuit including output circuitry for driving a capacitive multi-touch sensor and input circuitry for reading the sensor. Also disclosed herein are various noise rejection and dynamic range enhancement techniques that permit the controller to be used with various sensors in various conditions without reconfiguring hardware.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: February 16, 2016
    Assignee: Apple Inc.
    Inventors: Steven P. Hotelling, Christoph H. Krah, Brian Q. Huppi
  • Publication number: 20160041663
    Abstract: An electronic device may include a display. The display may be formed by an array of light-emitting diodes mounted to the surface of a substrate. The substrate may be a silicon substrate. Circuitry may be located in spaces between the light-emitting diodes. Circuitry may also be located on the rear surface of the silicon substrate and may be coupled to the array of light-emitting diodes using through-silicon vias. The circuitry may include integrated circuits and other components that are attached to the substrate and may include transistors and other circuitry formed within the silicon substrate. Touch sensor electrodes, light sensors, and other components may be located in the spaces between the light-emitting diodes. The substrate may be formed from a transparent material that allows image light to reach a lens and image sensor mounted below the substrate.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 11, 2016
    Inventors: Wei Chen, Steven P. Hotelling, John Z. Zhong, William C. Athas, Wei H. Yao
  • Patent number: 9250734
    Abstract: The use of one or more proximity sensors in combination with one or more touch sensors in a multi-touch panel to detect the presence of a finger, body part or other object and control or trigger one or more functions in accordance with an “image” of touch provided by the sensor outputs is disclosed. In some embodiments, one or more infrared (IR) proximity sensors can be driven with a specific stimulation frequency and emit IR light from one or more areas, which can in some embodiments correspond to one or more multi-touch sensor “pixel” locations. The reflected IR signal, if any, can be demodulated using synchronous demodulation. In some embodiments, both physical interfaces (touch and proximity sensors) can be connected to analog channels in the same electrical core.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: February 2, 2016
    Assignee: Apple Inc.
    Inventors: Steven P. Hotelling, Christoph H. Krah
  • Patent number: 9246486
    Abstract: An electronic device may have a housing in which components such as a display are mounted. A strain gauge may be mounted on a layer of the display such as a cover layer or may be mounted on a portion of the housing or other support structure. The layer of material on which the strain gauge is mounted may be configured to flex in response to pressure applied by a finger of a user. The strain gauge may serve as a button for the electronic device or may form part of other input circuitry. A differential amplifier and analog-to-digital converter circuit may be used to gather and process strain gauge signals. The strain gauge may be formed form variable resistor structures that make up part of a bridge circuit that is coupled to the differential amplifier. The bridge circuit may be configured to reduce the impact of capacitively coupled noise.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: January 26, 2016
    Assignee: Apple Inc.
    Inventors: Bingrui Yang, Martin P. Grunthaner, Steven P. Hotelling
  • Publication number: 20160018946
    Abstract: Error compensation of a touch sensing signal is provided. A touch screen can include a drive region that can be driven by a drive signal, and a sense region that can output a sense signal that includes information of a first amount of touch on or near the touch screen and information of a first amount of error. The first amount of touch can be based on the drive signal. The touch screen can include a compensation sensor that can output a compensation signal that includes information of a second amount of error, and an error compensator that can compensate for the first amount of error in the sense signal based on the second amount of error.
    Type: Application
    Filed: September 28, 2015
    Publication date: January 21, 2016
    Inventor: Steven P. HOTELLING
  • Patent number: 9239673
    Abstract: Methods and systems for implementing gestures with sensing devices are disclosed. More particularly, methods and systems related to gesturing with multipoint sensing devices are disclosed.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: January 19, 2016
    Assignee: Apple Inc.
    Inventors: Joshua H. Shaffer, Steven P. Hotelling, Myra Haggerty, Nima Parivar, Duncan Robert Kerr, Wayne Westerman
  • Publication number: 20160004278
    Abstract: A touch sensing device is disclosed. The touch sensing device includes one or more multifunctional nodes each of which represents a single touch pixel. Each multifunctional node includes a touch sensor with one or more integrated I/O mechanisms. The touch sensor and integrated I/O mechanisms share the same communication lines and I/O pins of a controller during operation of the touch sensing device.
    Type: Application
    Filed: September 10, 2015
    Publication date: January 7, 2016
    Inventor: Steven P. HOTELLING
  • Publication number: 20150370376
    Abstract: A device configured to determine the location and magnitude of a touch on a surface of the device. The device includes a transparent touch sensor that is configured to detect a location of a touch on the transparent touch sensor. The device also includes a force-sensing structure disposed at the periphery of the transparent touch sensor. The force sensor includes an upper capacitive plate and a compressible element disposed on one side of the upper capacitive plate. The force sensor also includes a lower capacitive plate disposed on a side of the compressible element that is opposite the upper capacitive plate.
    Type: Application
    Filed: February 6, 2014
    Publication date: December 24, 2015
    Inventors: Jonah A. HARLEY, Peter W. RICHARDS, Brian Q. HUPPI, Omar Sze LEUNG, Dhaval N. SHAH, Martin P. GRUNTHANER, Steven P. HOTELLING, Miguel C CHRISTOPHY, Vivek KATIYAR, Tang Yew TAN, Christopher J. BUTLER, Erik G. DE JONG, Ming SARTEE, Rui QIAO, Steven J. MARTISAUSKAS, Storrs T. HOEN, Richard Hung Minh DINH, Lee E. HOOTON, Ian A. SPRAGGS, Sawyer I. COHEN, David A. PAKULA
  • Publication number: 20150370396
    Abstract: A force sensing device for electronic device. The force inputs may be detected by measuring changes in capacitance, as measured by surface flex of a device having a flexible touchable surface, causing flex at a compressible gap within the device. A capacitive sensor responsive to changes in distance across the compressible gap. The sensor can be positioned above or below, or within, a display element, and above or below, or within, a backlight unit. The device can respond to bending, twisting, or other deformation, to adjust those zero force measurements. The device can use measure of surface flux that appear at positions on the surface not directly the subject of applied force, such as when the user presses on a part of the frame or a surface without capacitive sensors.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 24, 2015
    Inventors: Steven P. Hotelling, Martin P. Grunthaner, Peter W. Richards, Romain A. Teil, Charley T. Ogata, Michael E. Wittenberg
  • Patent number: 9201461
    Abstract: Flexible circuits for routing signals of a device, such as a touch sensor panel of a touch sensitive device, are provided. The flexible circuit can include a first set of traces for routing a first set of lines and a second set of traces for routing a second set of lines. The first set of traces can couple together the ends of at least a portion of the first set of lines. Additionally, the first set of traces can be non-intersecting or non-overlapping with the second set of traces. The flexible circuit can have a T-shape configuration and can be incorporated within a touch sensitive device, display device, printed circuit board, or the like. The flexible circuit can be placed over another flexible circuit, and can extend onto the device.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: December 1, 2015
    Assignee: Apple Inc.
    Inventors: Steven P. Hotelling, Joshua G. Wurzel, Steven J. Martisauskas, Thayne M. Miller, Kuo-Hua Sung
  • Publication number: 20150324062
    Abstract: A touch sensor panel configured to detect objects touching the panel as well as objects that are at a varying proximity to the touch sensor panel. The touch sensor panel includes circuitry that can configure the panel in a mutual capacitance (near field) architecture or a self-capacitance (far field and super far field) architecture. The touch sensor panel can also include circuitry that works to minimize an effect that a parasitic capacitance can have on the ability of the touch sensor panel to reliably detect touch and proximity events.
    Type: Application
    Filed: June 30, 2015
    Publication date: November 12, 2015
    Inventors: John Greer ELIAS, Steven P. HOTELLING
  • Publication number: 20150309641
    Abstract: A multi-touch sensor panel is disclosed that can be produced by forming a plurality of first traces of substantially transparent conductive material on a first substrate, forming a plurality of second traces of the substantially transparent material, and creating a fluid-tight gap between the plurality of first traces and the plurality of second traces. The fluid-tight gap can then be filled with a fluid having substantially no bubbles and an optical index similar to the optical index of the first and second traces to make the gap and the first and second traces substantially transparent. The second and first traces can be oriented to cross over each other at crossover locations separated by the fluid, the crossover locations forming mutual capacitance sensors for detecting touches.
    Type: Application
    Filed: May 4, 2015
    Publication date: October 29, 2015
    Inventors: Steven P. HOTELLING, Brian R. LAND, Mark Arthur HAMBLIN
  • Publication number: 20150309623
    Abstract: A touch screen including display pixels with capacitive elements is provided. The touch screen includes first common voltage lines connecting capacitive elements in adjacent display pixels, and a second common voltage line connecting first common voltage lines. Groups of pixels can be formed as electrically separated regions by including breaks in the common voltage lines. The regions can include a drive region that is stimulated by stimulation signals, a sense region that receives sense signals corresponding to the stimulation signals. A grounded region can also be included, for example, between a sense region and a drive region. A shield layer can be formed of a substantially high resistance material and disposed to shield a sense region. A black mask line and conductive line under the black mask line can be included, for example, to provide low-resistance paths between a region of pixels and touch circuitry outside the touch screen borders.
    Type: Application
    Filed: June 12, 2015
    Publication date: October 29, 2015
    Inventors: Steven P. HOTELLING, Shih Chang Chang, Lili Huang, John Z. Zhong
  • Publication number: 20150309624
    Abstract: This relates to adding multi-touch functionality to a display without the need of a separate multi-touch panel or layer overlaying the display. Instead, embodiments of the invention can advantageously utilize existing display circuitry to provide multi-touch functionality while adding relatively little circuitry that is specific to the multi-touch functionality. Thus, by sharing circuitry for the display and the multi-touch functionalities, embodiments of the invention can be implemented at a lower cost than the alternative of superimposing additional multi-touch related layers onto an existing display panel. Furthermore, since the display and multi-touch functionality can be implemented on the same circuit, they can be synchronized so that noise resulting from the display functionality does not detrimentally affect the multi-touch functionality and vice versa.
    Type: Application
    Filed: July 8, 2015
    Publication date: October 29, 2015
    Inventors: Steven P. HOTELLING, John Z. ZHONG
  • Publication number: 20150286332
    Abstract: A force imaging touch pad includes first and second sets of conductive traces separated by a spring membrane. When a force is applied, the spring membrane deforms moving the two sets of traces closer together. The resulting change in mutual capacitance is used to generate an image indicative of the amount or intensity of the applied force. A combined location and force imaging touch pad includes two sets of drive traces, one set of sense traces and a spring membrane. In operation, one of the drive traces is used in combination with the set of sense traces to generate an image of where one or more objects touch the touch pad. The second set of drive traces is used in combination with the sense traces and spring membrane to generate an image of the applied force's strength or intensity.
    Type: Application
    Filed: June 22, 2015
    Publication date: October 8, 2015
    Inventors: Steven P. HOTELLING, Brian Q. HUPPI