Patents by Inventor Steven P. Rosenberg

Steven P. Rosenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240068135
    Abstract: Interlacing equipment may be used to form fabric and to create a gap in the fabric. The fabric may include one or more conductive strands. An insertion tool may be used to align an electrical component with the conductive strands during interlacing operations. A soldering tool may be used to remove insulation from the conductive strands to expose conductive segments on the conductive strands. The soldering tool may be used to solder the conductive segments to the electrical component. The solder connections may be located in grooves in the electrical component. An encapsulation tool may dispense encapsulation material in the grooves to encapsulate the solder connections. After the electrical component is electrically connected to the conductive strands, the insertion tool may position and release the electrical component in the gap. A component retention tool may temporarily be used to retain the electrical component in the gap as interlacing operations continue.
    Type: Application
    Filed: November 8, 2023
    Publication date: February 29, 2024
    Inventors: Kyle L. Chatham, Kathryn P. Crews, Didio V. Gomes, Benjamin J. Grena, Storrs T. Hoen, Steven J. Keating, David M. Kindlon, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine, Lia M. Uesato, Joseph B. Walker, Felix Binder, Bertram Wendisch, Martin Latta, Ulrich Schläpfer, Franck Robin, Michael Baumann, Helen Wächter Fischer
  • Patent number: 11913143
    Abstract: Interlacing equipment may be used to form fabric and to create a gap in the fabric. The fabric may include one or more conductive strands. An insertion tool may be used to align an electrical component with the conductive strands during interlacing operations. A soldering tool may be used to remove insulation from the conductive strands to expose conductive segments on the conductive strands. The soldering tool may be used to solder the conductive segments to the electrical component. The solder connections may be located in grooves in the electrical component. An encapsulation tool may dispense encapsulation material in the grooves to encapsulate the solder connections. After the electrical component is electrically connected to the conductive strands, the insertion tool may position and release the electrical component in the gap. A component retention tool may temporarily be used to retain the electrical component in the gap as interlacing operations continue.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: February 27, 2024
    Assignee: Apple Inc.
    Inventors: Kyle L Chatham, Kathryn P. Crews, Didio V. Gomes, Benjamin J. Grena, Storrs T. Hoen, Steven J. Keating, David M. Kindlon, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine, Lia M. Uesato, Joseph B. Walker, Felix Binder, Bertram Wendisch, Martin Latta, Ulrich Schläpfer, Franck Robin, Michael Baumann, Helen Wächter Fischer
  • Patent number: 8175862
    Abstract: Modeling systems and methods for constructing one or more models of a computing system using collected data. Certain model-based systems build topology models and/or model instances by transforming collected performance data into a collection-location independent form. In certain examples, systems include at least one agent for collecting performance data from monitored resource(s), canonical data transform (CDT) configurations, and a data transformation module for performing data transform operation(s) on the performance data based on at least one CDT configuration. The data transform operation may include generating and/or updating a topology model, assigning metrics to model object(s), updating properties of model object(s), creating associations between existing model objects, or the like. Certain systems and methods also allow for a single piece of data to be processed by multiple models or for pieces of data collected from different locations to be matched and/or associated with the same model object.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: May 8, 2012
    Assignee: Quest Software, Inc.
    Inventors: Dmitri Bourlatchkov, Brendan Behan, Yu Li, Nils Meier, Leo Pechersky, Steven P. Rosenberg, Geoff Vona
  • Patent number: 7691348
    Abstract: A process for removing anionic impurities from a caustic aluminate solution having aqueous tetrahydroxy aluminate ions is described. A caustic aluminate solution is obtained such that anionic impurities are partially or substantially substituted into tetrahydroxy aluminate ions to form substituted aluminate ions. A suitable calcium compound, such as quicklime, is reacted in a conventional slaker (10) with a slaking solution, for example water, and stored in an agitated storage tank (12). The resulting slurry is pumped to a reaction vessel (14) where it is reacted with a caustic aluminate solution under appropriate conditions such that the calcium compound is converted into tricalcium aluminate (TCA) precipitate. Upon reaction substituted aluminate ions are substantially incorporated within the TCA precipitate to form a substituted TCA precipitate enabling the anionic impurities to be removed from the solution via the substituted TCA precipitate for disposal or recovery.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: April 6, 2010
    Assignee: BHP Billiton Worsley Alumina Pty Ltd.
    Inventors: Steven P. Rosenberg, Wayne Tichbon, Alex R. Aboagye, Catherine A. Heath, Darrel J. Wilson
  • Patent number: 7244404
    Abstract: A process for the removal and causticisation of sodium oxalate and/or sodium sulphate from a Bayer process liquor containing sodium carbonate and one or both of sodium oxalate and sodium sulphate in an alumina refinery is described. The process is based on the observation that to efficiently causticise sodium oxalate solutions, it is first necessary to remove the aluminate ion from solution, optionally with recovery of the aluminate ion in some later step. This is effected by removing aluminate ions from the Bayer liquor through the formation of a carbonate bearing hydrocalumite and/or sulpha-bearing hydrocalumite. The liquor may then be treated with sufficient lime to remove and causticise any residual carbonate ions and some or all of the oxalate ions present so that any reacted lime solids thus formed can be separated and safely disposed of.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: July 17, 2007
    Assignee: Worsley Alumina Pty. Ltd.
    Inventors: Steven P. Rosenberg, Wayne Tichbon, Darrel J. Wilson, Catherine A. Heath
  • Patent number: 7192568
    Abstract: An improved process for the production of tricalcium aluminate (TCA) filter aid for use in an alumina refinery is described. Quicklime is slaked in a slaker tin using a suitable slaking solution to form a slaked lime slurry (10). A suitable surface-active agent is added to the slaking solution prior to slaking of the lime. Alternatively, the surface-active agents can be added to the slaked lime either during slaking or after slaking. The slaked lime slurry is then transferred to a stirred storage/transfer tank (12) before it is pumped to a lime aging tank (14). A concentrated Bayer liquor and steam are added to the tank (14) to provide a caustic aluminate solution that reacts with the slaked lime. Sufficient residence time is allowed in the lime aging tank (14) for the initial product of the reaction to “age” before use, forming relatively pure particles of the thermodynamically stable TCA.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: March 20, 2007
    Assignee: Worsley Alumina Pty. Ltd.
    Inventors: Steven P. Rosenberg, Darrel J. Wilson
  • Publication number: 20040170546
    Abstract: A process for the removal and causticisation of sodium oxalate and/or sodium sulphate from a Bayer process liquor containing sodium carbonate and one or both of sodium oxalate and sodium sulphate in an alumina refinery is described. The process is based on the observation that to efficiently causticise sodium oxalate solutions, it is first necessary to remove the aluminate ion from solution, optionally with recovery of the aluminate ion in some later step. This is effeeted by removing aluminate ions from the Bayer liquor through the formation of a carbonate bearing hydrocalumite and/or sulpha-bearing hydrocalumite. The liquor may then be treated with sufficient lime to remove and causticise any residual carbonate ions and some or all of the oxalate ions present so that any reacted lime solids thus formed can be separated and safely disposed of.
    Type: Application
    Filed: March 12, 2004
    Publication date: September 2, 2004
    Inventors: Steven P. Rosenberg, Wayne Tichbon, Darrel J. Wilson, Catherine A. Heath
  • Publication number: 20040146455
    Abstract: A process for removing anionic impurities from a caustic aluminate solution having aqueous tetrahydroxy aluminate ions is described. A caustic aluminate solution is obtained such that anionic impurities are partially or substantially substituted into tetrahydroxy aluminate ions to form substituted aluminate ions. A suitable calcium compound, such as quicklime, is reacted in a conventional slaker (10) with a slaking solution, for example water, and stored in an agitated storage tank (12). The resulting slurry is pumped to a reaction vessel (14) where it is reacted with a caustic aluminate solution under appropriate conditions such that the calcium compound is converted into tricalcium aluminate (TCA) precipitate. Upon reaction substituted aluminate ions are substantially incorporated within the TCA precipitate to form a substituted TCA precipitate enabling the anionic impurities to be removed from the solution via the substituted TCA precipitate for disposal or recovery.
    Type: Application
    Filed: March 23, 2004
    Publication date: July 29, 2004
    Inventors: Steven P. Rosenberg, Wayne Tichbon, Alex R Aboagye, Catherine A Heath, Darrel J Wilson
  • Patent number: 6743403
    Abstract: A process for the removal and causticisation of sodium oxalate and/or sodium sulphate from a Bayer process liquor containing sodium carbonate and one or both of sodium oxalate and sodium sulphate in an alumina refinery is described. The process is based on the observation that to efficiently causticise sodium oxalate solutions, it is first necessary to remove the aluminate ion from solution, optionally with recovery of the aluminate ion in some later step. This is effected by removing aluminate ions from the Bayer liquor through the formation of a carbonate-bearing hydrocalumite and/or sulphate-hearing hydrocalumite. The liquor may then be treated with sufficient lime to remove and causticise any residual carbonate ions and some or all of the oxalate ions present so that any reacted lime solids thus formed can be separated and safely disposed of.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: June 1, 2004
    Assignee: Worsley Alumina Pty. Ltd.
    Inventors: Steven P. Rosenberg, Wayne Tichbon, Darrel J. Wilson, Catherine A. Heath
  • Publication number: 20040101470
    Abstract: An improved process for the production of tricalcium aluminate (TCA) filter aid for use in an alumina refinery is described. Quicklime is slaked in a slaker tin using a suitable slaking solution to form a slaked lime slurry (10). A suitable surface-active agent is added to the slaking solution prior to slaking of the lime. Alternatively, the surface-active agents can be added to the slaked lime either during slaking or after slaking. The slaked lime slurry is then transferred to a stirred storage/transfer tank (12) before it is pumped to a lime aging tank (14). A concentrated Bayer liquor and steam are added to the tank (14) to provide a caustic aluminate solution that reacts with the slaked lime. Sufficient residence time is allowed in the lime aging tank (14) for the initial product of the reaction to “age” before use, forming relatively pure particles of the thermodynamically stable TCA.
    Type: Application
    Filed: July 31, 2003
    Publication date: May 27, 2004
    Inventors: Steven P Rosenberg, Darrel J Wilson