Patents by Inventor Steven P. Sherman

Steven P. Sherman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250122646
    Abstract: Described are starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with high viscosity resulting from inclusion of the starch-based materials, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec?1, or even up to 4000 sec?1, without onset of melt flow instability. Viscosity and other processing characteristics can be improved by addition of an acid or acid anhydride, and/or by use of sorbitol as the plasticizer, when forming the starch-based material. The starch-based material can be blended with one or more thermoplastic materials, e.g., having higher melt flow index value(s), allowing the blend to be spun. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.).
    Type: Application
    Filed: December 17, 2024
    Publication date: April 17, 2025
    Inventors: Fehime Vatansever Ozaltun, Kanth V. Josyula, Wenji Quan, Leopoldo V. Cancio, Donald R. Allen, Kenneth L. Kramer, Steven P. Sherman
  • Publication number: 20240209554
    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec?1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).
    Type: Application
    Filed: January 19, 2024
    Publication date: June 27, 2024
    Inventors: Donald R. Allen, Leopoldo V. Cancio, Fahime Vatansever Ozaltun, Bradford LaPray, Bruno R. Pereira, Kenneth L. Kramer, Steven P. Sherman
  • Patent number: 11926940
    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec?1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: March 12, 2024
    Assignee: BIOLOGIQ, INC.
    Inventors: Donald R. Allen, Leopoldo V. Cancio, Fehime Vatansever Ozaltun, Bradford LaPray, Bruno R. Pereira, Kenneth L. Kramer, Steven P. Sherman
  • Patent number: 11926929
    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec?1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: March 12, 2024
    Assignee: BIOLOGIQ, INC
    Inventors: Donald R. Allen, Leopoldo V. Cancio, Fehime Vatansever Ozaltun, Bradford LaPray, Bruno R. Pereira, Kenneth L. Kramer, Steven P. Sherman
  • Patent number: 11879058
    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec?1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: January 23, 2024
    Assignee: BIOLOGIQ, INC
    Inventors: Donald R. Allen, Leopoldo V. Cancio, Fehime Vatansever Ozaltun, Bradford LaPray, Bruno R. Pereira, Kenneth L Kramer, Steven P. Sherman
  • Publication number: 20210277556
    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec?1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).
    Type: Application
    Filed: May 21, 2021
    Publication date: September 9, 2021
    Inventors: Donald R. Allen, Leopoldo V. Cancio, Fehime Vatansever Ozaltun, Bradford LaPray, Bruno R. Pereira, Kenneth L. Kramer, Steven P. Sherman
  • Publication number: 20210277207
    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec?1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).
    Type: Application
    Filed: May 21, 2021
    Publication date: September 9, 2021
    Inventors: Donald R. Allen, Leopoldo V. Cancio, Fehime Vatansever Ozaltun, Bradford LaPray, Bruno R. Pereira, Kenneth L. Kramer, Steven P. Sherman
  • Publication number: 20210269944
    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec?1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).
    Type: Application
    Filed: May 21, 2021
    Publication date: September 2, 2021
    Inventors: Donald R. Allen, Leopoldo V. Cancio, Fehime Vatansever Ozaltun, Bradford LaPray, Bruno R. Pereira, Kenneth L. Kramer, Steven P. Sherman
  • Patent number: 6031625
    Abstract: A system for retrieving reports and for extracting selected fields from print data streams that may be modified by a non-technical user to provide for revisions in format and additions of new report formats without any need for programming or knowledge of printer code. An extraction database is provided that contains report format information for each of the report formats in use. The report format information includes one or more extraction fields for each report format and a print position associated with the extraction field indicating the position at which the extraction field is printed in the corresponding report format. A print data stream containing a number of reports is analyzed for the presence of a first report, and the report format information associated with the first report format is retrieved from the extraction database.
    Type: Grant
    Filed: June 13, 1997
    Date of Patent: February 29, 2000
    Assignee: Alysis Technologies, Inc.
    Inventors: Steven P. Sherman, Chongshi Xu, Torben Moller, Hui-Tsung Liang, Paul Feng